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A B S T R A C T

In this paper, a constructed Green’s function coupled with a fixed point iteration scheme will be employed
to solve nonlinear dynamical problems that arise in electroanalytical chemistry. More precisely, the method
will be used to mathematically model and solve the kinetics of the amperometric enzyme. A main property
that makes the proposed method superior to other iterative methods is the way it handles boundary value
problems, where both endpoints are taken into consideration while other iterative methods only make
account of the initial point and as a result, the approximate solution may deteriorate for values that are far
away from the initial point and closer to the other endpoint. Through tests on some known amperomet-
ric enzyme kinetics, the proposed method gave more accurate results than many numerical schemes that
were employed for this purpose. The method is found to be easily implemented, fast, and computationally
economical and attractive.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The development of biosensors has received great deal of atten-
tion in recent years. In principle, biosensors are analytical devices
composed of biological recognition element and an optical or elec-
tronic transducer [1]. The biological element is usually an enzyme
that recognizes a specific analyte whereas the transducer translates
the biorecognition event into an electrical signal [2]. The advantages
of biosensors include their high sensitivity, their high selectiveness
of their biological recognition and their relatively low cost. Most
recently amperometric enzyme electrodes have been more empha-
sized for the development of a wide spectrum of biosensors [2–4].

The diffusion and reaction boundary value problems that arise
in amperometric enzyme kinetics have received great attention in
the past three decades. One of the early studies was carried out by
Bartlett and Whitaker [5], where an approximate analytical treat-
ment of the response of an amperometric enzyme electrode was
derived for the case where immobilisation of redox enzymes at
electrode surfaces was done by electrochemical polymerisation. Rel-
evant to this research, a mathematical model based on diffusion
equations related to Michaelis-Menten kinetics of the enzymatic
reaction was proposed by Baronas et al. [6]. The variation iteration
method (VIM) developed by J. He [7], which proved to be effective in
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finding approximate-analytic solution for a wide spectrum of nonlin-
ear dynamical models [8–11] has also been intensively used to give
approximate and analytic solutions of amperometric enzymatic reac-
tions. For example, the VIM was implemented to give approximate
and analytical solutions of nonlinear reaction diffusion equations
containing a nonlinear term related to Michaelis-Menten kinetic of
the enzymatic reaction [12,13]. Malvandi and Ganji used the varia-
tional iteration method coupled with Padé approximation to find a
reliable expression for amperometric enzyme kinetics based on the
rational functions [14]. The homotopy perturbation method (HPM),
proposed by J.H. He [15], has been received with great enthusiasm
by researchers who seek approximate-analytic solutions of nonlin-
ear dynamical systems. Shanmugarajan et al. employed the HPM to
obtain analytical solution of amperometric enzymatic reactions [16].
Commenting on the use of the HPM in article [16], He and Mo showed
how the HPM can be made more accessible to non-mathematicians
by suitable construction of a homotopy equation [17]. Also, Cheby-
shev wavelets based method was introduced by Mahalakshmi and
Hariharan [18] for finding approximate solution of this kind of
enzymatic reactions.

In this paper, we employ an iterative method that combine the
classical Green’s function, with the latest results of fixed point the-
ory. The method proposed by S.A. Khuri et al. [19] proved to be more
effective in solving dynamical systems especially of the boundary
value types. The effectiveness of the method resides in the fact that
both endpoints of the domain are accounted for in constructing the
iterative formula, whereas most methods consider only one endpoint
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of the domain making the possibility of poor approximations grows
larger as we approach the other endpoint. Of other desirable features
of the proposed method is its simple implementation and fast con-
vergence where sometimes a highly accurate solution is obtained by
very few iterations. The proposed method also puts no restrictions
on the nonlinear terms and requires no finite domain to maintain
convergence and stability.

2. The mathematical model

In biochemical systems, the enzyme kinetics in n-dimensional
medium, Y, is modeled by the reaction-diffusion equation [20]

∂S
∂t

= DS∇.(∇S) − u(t, X), x ∈ Y, (1)

where DS is the substrate diffusion coefficient, u is the initial reac-
tion velocity. Using Michaelis-Menton hypothesis, the velocity u for
a simple reaction process without competitive inhibition is given
by [20,21]

u(t, X) =
KS

1 + S/KM
, (2)

where K = k2E0/KM represents a pseudo first order, in which k2 is
the unimolecular rate constant, E0 is the total amount of enzyme, and
KM is the Michaelis constant. The one-dimensional form of Eq. (1) is
given by

∂S
∂t

= DS
∂2S
∂X2

− KS
1 + S/KM

, x ∈ Y, (3)

with initial condition given by

S(0, X) = S0(X). (4)

By introducing the parameters

s =
S

KS∞ , x =
X
L

, t =
DS

L2
, K =

kL2

DS
= 02, a =

kS∞

KM
, (5)

we obtain the steady state nonlinear reaction-diffusion equation

∂2s
∂x2

− Ks
1 + as

= 0, 0 < s ≤ 1, (6)

where S∞ is the substrate concentration in bulk solution (mol dm−3),
02 is the Thiele module. In this paper, we will present an approx-
imate profile for the concentration s(x) by solving the governing
steady-state Eq. (6) subject to the boundary conditions

s′(0) = 0,

As(0) + Bs(l) = C, (7)

where A, B, and C are constants. The cases of utmost interest, which
will be emphasized on this paper are:

1. The enzyme substrate reaction diffusion process (B = 0), and
2. The amperometric enzymatic reaction (A = 0).

3. Green’s function iteration method

Letting L[s] = ∂2s
∂x2 and F(a, K, s) = Ks

1+as , then the enzyme
substrate reaction equation takes the form

L[s] = F(a, K, s), (8)

subject to the initial conditions

s(0) = a,
∂s(0)
∂t

= 0, (9)

where a is constant. On the other hand, the amperometric enzymatic
reaction is given by Eq. (8) together with the boundary conditions

∂s(0)
∂t

= 0, s(l) = b, (10)

where b is constant.
The Green’s function G(x, n) for the differential operator is defined

as a solution to

L
[
G(x, n)

]
= d(x − n), (11)

subject to the corresponding homogeneous initial conditions

G(x, n)|x=0 = 0,
d
dx

G(x, n)|x=0 = 0. (12)

The particular solution, sp(x), of Eq. (8) is given by

sp(x) =

1∫
0

G(x, n)F(a, K, n)dn. (13)

Clearly the solution to the homogeneous equation L[s] = 0 is
given by

sh = C1x + C2. (14)

So we construct G(x, n) in the form

G(x, n) =

{
C1x + C2, 0 < x < n

C3x + C4, n < x < 1
. (15)

The constants Ci, i = 1, 2, 3, 4 will be determined by using the
following properties of Green’s function:

First, G(x, n) satisfies the homogeneous initial conditions
(Eq. (12)). This implies that

C1 = C2 = 0. (16)

Second, G(x, n) is continuous at x = n, that is

G(x, n)|x→n+ = G(x, n)|x→n− , (17)

which implies that

C3n + C4 = C1n + C2. (18)
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