Accepted Manuscript

On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode

Reham H. Tammam, Mahmoud M. Saleh

PII: S1572-6657(17)30263-1

DOI: doi: 10.1016/j.jelechem.2017.04.023

Reference: JEAC 3236

To appear in: *Journal of Electroanalytical Chemistry*

Received date: 21 January 2017 Revised date: 15 April 2017 Accepted date: 17 April 2017

Please cite this article as: Reham H. Tammam, Mahmoud M. Saleh, On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi: 10.1016/j.jelechem.2017.04.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified

glassy carbon electrode

Reham H. Tammam*, Mahmoud M. Saleh*

Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt

Abstract:

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) are

used here to investigate the electrochemical characteristics of the urea oxidation on nickel

oxide (NiO_x) nanoparticles modified glassy carbon (GC) electrode from alkaline 0.5 M

NaOH solution. The effects of NiO_x loading and urea concentration on urea

electrocatalytic oxidation are discussed in the light of the EIS data and corresponding

equivalent circuits. The Nyquist plots show semicircles with fitting parameters that are

dependent on the applied conditions. Charge transfer resistance is found to be lower in

presence of urea due to higher rates of urea electrooxidation. Cyclic voltammetry (CV)

helps to investigate the catalytic properties of urea oxidation on the GC/NiO_x. The

relation between the peak current of urea oxidation and the potential scan rate are

measured and calculated by Randles-Sevcik equation. The results indicate a diffusion-

controlled irreversible process. Optimization of the loading extent of NiO_x and

interpretation of the effect of urea concentration is enabled from the CVs, EIS and

equivalent circuit parameters.

Keywords: Urea, Oxidation, Nanoparticles, Electrocatalysis, Nickel.

*Corresponding Author: e-mail: mahmoudsaleh90@yahoo.com, reham_tammam@cu.edu.eg

Tel: (202)-3567-6605

1

Download English Version:

https://daneshyari.com/en/article/4907870

Download Persian Version:

https://daneshyari.com/article/4907870

<u>Daneshyari.com</u>