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A B S T R A C T

The recently described theory of potential step chronoamperometry at inlaid microdisk electrodes
[L. K. Bieniasz, Electrochim. Acta 199(2016)1] is extended to hemispheroidal electrodes, assuming
diffusional transport under limiting current conditions. Both oblate and prolate hemispheroids are
discussed. The theory provides previously unknown, rigorous, complete, and explicit expressions for the
concentration, the Faradaic current density, and the Faradaic current. The expressions are in the form
of inverse Laplace transforms of infinite series involving spheroidal wave functions. Numerical Laplace
transform inversion, applied to the series, yields highly accurate solution values. Hence, the present
solutions are advantageous over formerly used low-accurate and/or heuristic approximations, for the
purposes of experimental data analysis, and for testing of modelling/simulation techniques.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper describes a novel theory of potential step chronoam-
perometry (PSCA) for an uncomplicated charge transfer reaction,
performed at a single hemispheroidal electrode mounted on an
insulator plane. Hemispheroidal electrodes have been considered in
the literature as models of mercury microelectrodes obtained by
deposition of mercury on inlaid solid metal microdisk electrodes [1],
and of modified electrodes obtained by embedding spheroidal
particles in a planar substrate [2]. Further examples include hemi-
spheroidal shapes of polymer sensors in polymer entrapped enzyme
ultramicroelectrodes [3], and “whisker” electrodes obtained by
dendritic growth, or by carbonization of organic compounds [4].
Hemispheroidal electrodes are also interesting from a purely theo-
retical point of view, as they require an unified theory that includes
the theories of inlaid disks and hemispheres as special subcases
(which otherwise might seem rather unrelated).

We shall assume a simple reduction reaction

O + ne− � R (1)

E-mail address: nbbienia@cyf-kr.edu.pl (L. Bieniasz).
1 http://www.cyf-kr.edu.pl/~nbbienia

with only species O being initially present. Diffusional transport of
O will be considered, under limiting current conditions caused by an
electrode potential step to a highly negative value at time t = 0 (the
theory obtained applies equally well to the reverse reaction with R
initially present, after appropriate sign changing). Possible additional
complications, such as natural convection, Ohmic drops, or double
layer charging, will not be taken into account.

There have been several former theoretical studies related to the
PSCA for reaction (1) at hemispheroidal electrodes. Birke [5], Old-
ham [6], Myland and Oldham [4], Diao et al. [7], and Rajendran and
Sangaranarayanan [8] determined and analysed steady state cur-
rents that are achieved after sufficiently long time after applying
the potential step (or other electrode perturbations). The authors of
Ref. [8] observed that the formulae for the steady state current are
equivalent to equations derived earlier in soil infiltration studies [9],
which was unnoticed by other electrochemists. Myland and Old-
ham [4] presented two terms of a short-time expansion to the PSCA
current, for oblate and prolate hemispheroids. Phillips [10] reported
three terms of a long-time current expansion. Qian et al. [11] per-
formed transient digital simulations of the PSCA, by solving the
relevant diffusion partial differential equations (PDEs) by the finite-
analytic method. The simulations were restricted to oblate hemi-
spheroids. Diao et al. [12] derived a simplified analytical equation
describing the PSCA current at oblate hemispheroids. Rajendran [13]
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presented a heuristic all-time approximant to the PSCA current,
designed both for the oblate and prolate hemispheroids. Later
on, Rajendran and Ananthi [14] proposed another, more elaborate
approximant of the Padé type. They also presented four terms (albeit
not entirely consistent with Ref. [10]) of the long-time current
expansion. The approximations from Refs. [4,10,12-14] are compiled
in Appendix A.

The theory to be presented below will be based on the approach
previously employed for considering the PSCA at an inlaid microdisk
electrode [15]. In Ref. [15] the microdisk was perceived as a
limiting case of an oblate hemispheroid, when the smallest of its
radii is reduced to zero. By using this property, a rigorous for-
mula was derived, representing a Laplace transform of the con-
centration distribution around a microdisk. The formula involved a
series of spheroidal wave functions [16–22]. A possibility of adopt-
ing an analogous formalism for the description of hemispheroidal
electrodes was indicated, but the discussion was focused on the
microdisk modelling only. In the present work we shall explore the
possibility indicated, and we shall derive respective formulae for the
Laplace transforms of the Faradaic current density and the Faradaic
current at a hemispheroidal electrode. This will be accomplished
in an analytical way, without any simplifications. Subsequently, we
shall invert the Laplace transforms numerically, to obtain highly
accurate values of the current density and the current, in the time
domain. Theoretical modelling employing numerical inversion of
the Laplace transform has been advocated in electrochemistry by
Montella [23,24]. The numerical inversion has also proven successful
in the developments of the electrochemical modelling methodology
based on integral equations (IEs) [25].

It should be emphasised that no electrochemist has presented
thus far complete rigorous and explicit analytical or semi-analytical
equations for the transient Faradaic current density and the Faradaic
current due to PSCA at a hemispheroid. The equations obtained
in Refs. [4-8,10-14] are either not complete, not explicit, or
not rigorous. To be rigorous, the equations should not involve
heuristic approximations or simplifications. Completeness requires
the validity of the equations for any time value, and for any physically
justified location in space. For explicitness, a need to solve implicit
equations, such as IEs or partial differential equations (PDEs), must
be avoided: the Faradaic current density and the Faradaic current
should be computable directly as right-hand sides of the equations.
In contrast, the semi-analytical equations derived in the present
work are simultaneously rigorous, complete, and explicit.

2. Theory

A hemispheroid can be defined as a body resulting from rotating
an ellipse around one of its axes, and halving the spheroid obtained
along the plane formed by the second, rotated axis. In the case of
hemispheroidal electrodes, the cut plane coincides with the insulator
plane, on which the electrode is mounted. Such an electrode has a
rotational symmetry. This suggests a description using a cylindri-
cal coordinate system (r, z), in which the z axis is the symmetry
axis, with z = 0 corresponding to the insulator plane (see Fig. 1).
The lengths of the two semi-axes of the hemispheroidal electrode
can be denoted by a and b, with a equal to the basal radius of
the hemispheroid, and b equal to the distance by which the hemi-
spheroid stands above the insulator plane. It is convenient to intro-
duce a shape parameter s = b/a. Depending on the value of s one
can distinguish the following special cases (cf. Fig. 1). The case of
an inlaid disk electrode corresponds to s = 0. When 0 < s < 1
we have an oblate hemispheroidal electrode. When s = 1 the
electrode is hemispherical. Finally, s > 1 corresponds to a prolate
hemispheroidal electrode. In the further discussion we shall assume
that any hemispheroid is represented by the parameters a and s
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Fig. 1. The various special cases of a hemispheroidal electrode.

(rather than a and b). From the standard equation of an ellipse, it is
then easy to find [4] that any point at the surface of a hemispheroidal
electrode has coordinates (r, Z(r)), where

Z(r) = as

[
1 −

(
r
a

)2
]1/2

. (2)

Subsection 2.1 provides the initial boundary value problem (IBVP)
for the PSCA experiment, formulated using standard cylindrical
coordinates. Subsection 2.2 provides alternative formulations, more
suited to the particular cases of s . Known steady state solutions are
recalled in Subsection 2.3. Derivations of the transient solutions are
addressed in Subsection 2.4.

2.1. The IBVP in cylindrical coordinates

In the cylindrical coordinate system, the two-dimensional
diffusion PDE for the concentration c(r, z, t) of species O in the
electrolyte is:

∂c(r, z, t)
∂t

= D

[
∂2c(r, z, t)

∂r2
+ r−1 ∂c(r, z, t)

∂r
+

∂2c(r, z, t)
∂z2

]
. (3)

The PDE is accompanied by the initial condition

c(r, z, 0) = c�. (4)

In Eqs. (3) and (4) D is the diffusion coefficient of O, and c� is its
initial uniform concentration. The boundary conditions (all holding
at t > 0) are as follows. At the electrode surface (for 0 ≤ r < a)

c(r, Z(r), t) = 0, (5)

and at the insulator surface (for r > a)

∂c(r, z, t)
∂z

∣∣∣∣
z=0

= 0. (6)

Eq. (5) assumes a zero concentration of O at the electrode surface, as
a consequence of maintaining, at t ≥ 0, a highly negative electrode
potential (limiting current conditions). Eq. (6) is a no-flux condition,
stating the lack of the consumption of the depolarizer at the insulator
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