Accepted Manuscript

High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol

R.A. Geioushy, Mazen M. Khaled, Abbas S. Hakeem, Khalid Alhooshani, Chanbasha Basheer

PII: S1572-6657(16)30731-7

DOI: doi: 10.1016/j.jelechem.2016.12.029

Reference: JEAC 3025

To appear in: Journal of Electroanalytical Chemistry

Received date: 23 September 2016 Revised date: 13 December 2016 Accepted date: 17 December 2016

Please cite this article as: R.A. Geioushy, Mazen M. Khaled, Abbas S. Hakeem, Khalid Alhooshani, Chanbasha Basheer, High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2016), doi: 10.1016/j.jelechem.2016.12.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High efficiency graphene/Cu₂O electrode for the electrochemical reduction of carbon dioxide to ethanol

R.A. Geioushy ^{a,b}, Mazen M. Khaled ^{a,*}, Abbas S. Hakeem ^c, Khalid Alhooshani ^a, Chanbasha Basheer ^a

Abstract

Fabrication of an efficient catalyst for the electrochemical reduction of CO₂ to valuable products at low overpotential remains a severe challenge. Herein, graphene (GN)/Cu₂O catalyst, with an average particle size of 20-50 nm has been synthesized and coated on copper foil. The linear seep voltammetry studies showed that the 0.1 mg of GN/Cu₂O loaded catalyst exhibited the highest current density in CO₂ saturated 0.5 M NaHCO₃ electrolyte. The GN/Cu₂O electrode was significantly more active toward CO₂ reduction showing a current density of approximately 12.2 mA/cm² at -1.7 V versus Ag/AgCl, which is higher than Cu₂O electrode (8.4 mA/cm²). Gas chromatography-mass spectrometry analysis of the liquid products revealed that ethanol (~ 0.34 ppm) was found to be the predominant product at -0.9 V with high reasonably Faradaic efficiency up to 9.93%. These results suggest that graphene may be used as a promising non-metallic support for the electrochemical reduction of CO₂.

^a Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

^b Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R & D Institute (CMRDI), P.O. Box, 87 Helwan, 11421 Cairo, Egypt

^c Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Download English Version:

https://daneshyari.com/en/article/4908084

Download Persian Version:

https://daneshyari.com/article/4908084

Daneshyari.com