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Article history: Iron and its alloys acquire stability because of the phenomenon of passivity. Though several theories, models and
Received 13 June 2016 experimental works on passivity have been published in the literature, the mechanisms underlying the stability
Received in revised form 5 December 2016 of the passive oxide over the metals remain still a mystery. This review presents recent developments on theo-
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perimental results on iron/electrolyte system and theoretical developments in general and specific to iron by
invoking high field model, modified high field model, point defect model (PDM), variants of PDM (VPDM), diffu-

'éﬁﬂﬁgfgf; sion Poisson coupled model (DPCM), density functional theory based atomistic model. The experimental and
Passivity model-predicted dependencies on applied voltage, pH, chloride and temperature are also presented and
Barrier-layer breakdown discussed.
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Nomenclature Q; Transfer coefficient of i defect reaction
K K=Fe/RT
iss steady state current density k9 standard rate constant for i defect reaction
Lss steady state thickness v F/RT
C capacitance ki rate constant of the i of the defect reaction
Csc space charge capacitance a;,b;C; parameters appearing in the rate constant k;
& relative permittivity Cy+ concentration of hydrogen
€ permittivity of vacuum Cy+° standard hydrogen ion concentration
E electron charge Rpp Pilling-Bedworth ratio
Do diffusivity Reonst electronic contact resistance at ™/ f interface
R gas constant Py electronic resistivity of the oxide film
€ electric field strength Qo) molar volume of the metal oxide
F Faraday constant Qm molar volume of the metal
Np donor concentration in the passive film tind induction time
Na acceptor concentration in the passive film Jea flux of cation vacancy
E, Vap, Vin  applied potential Ipass passivation current
Ep, flatband potential Tact reactivation current
bps potential drop at f/s interface K% base rate constant for the 4th defect reaction
bmyf potential drop at m/f interface Keq(T)  equilibrium constant
dfs value of ¢ysunder standard conditions Ry rate of change of boundary layer thickness
v /F open circuit potential at m/f interface Jo flux of oxygen vacancy
bR reference potential drop at m/f interface 1% thickness of barrier layer before chloride addition
Ve open circuit potential KK potential and pH dependent functions defined in [38]
Esne potential of the standard hydrogen electrode (e steady state metal vacancy concentration before chlo-
Epi bifurcation potential ride addition
Kg Boltzmann constant Cm(y= yp(t),t) metal vacancy concentration at the moving
T temperature boundary at Cp,(y = yp(t))
h) oxidization state of the metal cation in the barrier layer, Vit pitting potential
Oxidization state of the metal cation in the solution
7% oXygen vacancy
|78 cation vacancy .
0, oxygen in the oxygen sublattice L Introduction
My, cation in cation site on the cation sublattice . . .
v metal vacancy at the metal . The explmtapon of'metals 'and alloys, especially the iron based mate-
m
Fe iron in the iron sublattice rials for domestic and industrial purposes started even before 150 years
Fe . . oy
Mo+ cation in the solution [1-6] by virtue of their stability at room temperature and at neutral pH.
ME+ interstitial cation However passivity and its breakdown continue to pose several chal-
1 . . .o
Mo stiochiometric oxide lenges and are of current interest [7]. These metals acquire stability by
%/2 . . . . .
L thickness of the passive film reac.tmg 1mmed1ate'ly with oxygen/o?(lde at room temperature in the
o polarizability of m/f interface en\{lronments formmg. a compact oxide layer over the metal surfgces
B dependence of the potential drop at f/s interface on pH which preve.nts corrosion of the.n.letals. Thg stability [8-10] provided
by these oxides known as passivity remained a mystery for several
years with no unifying theoretical treatments [3,5,11-33]. Though in-
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