FISEVIER

Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

Novel air agitated tapered adsorber for crystal violet removal on biomass combustion residue with process optimization using response surface modeling

Sandip Kumar Ghosh^{a,b}, Amitava Bandyopadhyay^{a,*}

- ^a University of Calcutta. 92. A.P.C. Road. Kolkata 700 009. India
- ^b Indian Institute of Chemical Engineers. Kolkata 700 032, India

1. Introduction

Dyes are used in various process operations such as manufacture of dyes, textile, tannery, dyeing and bleaching that generate effluent containing colors. The effluent containing color requires adequate treatment before being discharged outside the process plant. There are various methods for the treatment of colored effluent [1], such as chemical oxidation, coagulation, photochemical oxidation, biological treatment, membrane separation and adsorption. In brief, the descriptions of these methods [2] are as follows. Colored waste water generally comprises high concentrations of BOD, COD, color, pH, and heavy metals. In order to treat such complex waste water stream chemical oxidation method using chemicals has been reported in the literature. In this method, generally the oxidation leads to the precipitation of the pollutant after oxidation that needs separation from the waste water stream before final discharge. In coagulation, colloidal materials are destabilized with the help of polymeric coagulating agents followed by flocculation after formation of the flocs. Inorganic coagulants for instance, aluminum sulfate, aluminum chloride and ferric sulfate are also reported to be used. The enhanced particle size due to formation of flocs enables removal from the stream easily. The photochemical oxidation process being an advanced oxidation process has also been reported to be used in the treatment of colored waste water. In this process, highly reactive hydroxyl radical formed is mainly responsible for degrading organics present in colored waste water. Sometimes solar radiation is used for enhancing the formation of the reactive hydroxyl radicals towards degrading the organics at a relatively reduced cost. Biological treatment can be used to treat colored waste water for degrading the biodegradable organics. The refractory organics however, require relatively longer time to degrade in the biological process than the simpler organic molecules. Different types of biological methods are in application such as aerobic, anaerobic and anoxic systems as well as suspended- and attached- growth according to microorganism growth. The membrane separation has also been applied for treating colored waste water. In this process, the feed is passed through the membrane (polymeric or ceramic) to produce clear

liquid in the permeate while enriching the pollutant in the retentate. Though the process does not utilize any chemicals for the treatment, generation of the concentrate in the permeate limits it application due to further treatment of its discharge. Fouling and concentration polarization further complicate the process operation. Adsorption has been remaining as one of the most efficient processes among all other processes in the treatment of colored waste water. Its unique ability to remove pollutants from the waste water is reported. In this process the pollutants are adsorbed onto the surface of the adsorbent, owing to large surface area. The process is a surface driven phenomena. The generation of larger surface area at a relatively lower cost has been a challenge to the researchers for achieving the desired effluent quality. All water and waste water treatment methods are based only on the five mechanisms such as adsorption, co-precipitation, precipitation, sizeexclusion, and volatilization [3]. Therefore, principally adsorption is one of the methods used in most of the waste water treatment scheme as a final or polishing stage. Moreover, it has the advantages of achieving higher removal efficiency, producing high quality water economically and not requiring skilled personnel in contrast to other methods. In waste water treatment, the adsorption seems an important step in treating colored effluent like other pollutants.

Legion of investigations have so far been carried out on the removal of Crystal Violet (CV) using various adsorbents under conventional batch operating mode using Erlenmeyer flasks in mechanical (orbital) shaker, such as biomass combustion residue [4], Peat of Brunei Darussalam III [5], Ricinus communis Pericarp Carbon [6], Jute Fiber Carbon [7], Lignocellulosic Waste from Bidi Industry [8], Novel hydrogel composite [9], zeolites from coal fly- and bottom- ashes [10], magnetically modified activated carbon and nanomagnetic iron oxide [11] so on and forth. The adsorptive removal of dyes onto different novel metal oxides either alone or in combination have also been reported in the literature, for example, adsorption of acid red 27 dye from aqueous solutions onto Fe_2O_3 nanoadsorbents [12], organic dyes from its aqueous solutions by magnetic Fe_3O_4 core–shell nanoparticles [13], reactive blue 21 onto TiO_2 [14], reactive yellow 15 onto TiO_3 [14], reactive yellow 15 onto TiO_4 [15], methyl blue on amorphous transi-

E-mail addresses: amitava.bandy@gmail.com, amitava.cuche@gmail.com (A. Bandyopadhyay).

^{*} Corresponding author.

AP Adequate precision a _R Redlich-Peterson isotherm constant, (L/mg) b _T Temic minitar related to the heat of sorption indicating 1/b _T as the adsorption potential of the adsorbent, J/mol C _s Equilibrium concentration of CV, mg/L C _t Final concentration of CV, mg/L C _t Ionic concentration of this pecies, mol/L C _t Ionic concentration of CV any L C _t Equilibrium concentration of CV any L C _t	Nomenclature		n_s	Sips isotherm model exponent
Part Adequate precision Apa Amount of CV adsorbed measured at equilibrium, mg/g Amount of CV adsorbed acclustated at equilibrium, mg/g Amount of CV adsorbed at collected at equilibrium, mg/g Amount of CV adsorbed at time t, mg/g Correlation coefficient, dimensionless r²-Adj r²-Preci Coefficient of determination of the species precipied to the time to the time to determination of the species precipied time to the time to determination of the species precipied time time to the time time to the time time to the time time to the time time time time time time time tim			p	Number of parameters
A Adequate precision a _R Redlich-Peterson isotherm constant, (L/mg) b _T Temkin constant related to the heat of sorption indicating 1/b _T as the adsorption potential of the adsorbent, J/mol C _S Equilibrium concentration of CV, mg/L C _G Final concentration of CV, mg/L C _I Ionic concentration of this pecies, mol/L C _I Ionic concentration of CV at any time t, mg/L C _I Concentration of CV at any time t, mg/L C _I Concentration of CV at any time t, mg/L C _I Liquid film diffusion constant, min ⁻¹ E Sorption energy, kJ/mol F Faraday constant, 96500C/mol F-value F _{CO} Fractional attainment of adsorption equilibrium [= ^a / _{v₀}] dimensionless g Redlich-Peterson isotherm exponent I Intercept in Weber-Morris intra-particle diffusion model, mg/g J Pseudo-second order adsorption kinetic rate constant, g/mg/L k _I Pseudo-first order adsorption kinetic rate constant, g/mg/L k _I Rate constant, [I/mg k _R Redlich-Peterson isotherm constant, (L/g) K _R Temklin isotherm constant, L/gm M Mass of the adsorbent per unit volume, W/V, g/mL MS Mean squares, sum of squares divided by df Number of data points Freundlich constant, idimensionless Temple variance Temple variance Amount of CV adsorbed acleualted at equilibrium, mg/g Amaximum amount of CV adsorbed, mg/g Amount of CV	A		Q_a	· ·
a _R Redlich-Peterson isotherm constant, (L/mg) q _{L-cal} Mount of CV adsorbed calculated at equilibrium, mg/g q _H Maximum amount of CV adsorbed, mg/g Amount of CV adsorbed at time t, mg/g q _{L-cal} Maximum amount of CV adsorbed at time t, mg/g				
br Temkin constant related to the heat of sorption indicating 1/br as the adsorption potential of the adsorbent, J/mol Ce Equilibrium concentration of CV, mg/L r² Correlation coefficient, dimensionless r² Coefficient of determination, dimensionless r² Coefficient of determination, dimensionless r² Coefficient of determination, dimensionless r²-Pred Adjusted R-squared, dimensionless r²-Pred Adjusted R-squared, dimensionless r²-Pred R-squared, dimensionless r	AP		q_e or $q_{e,i}$	
1/b _T as the adsorption potential of the adsorbent, J/mol C _Q Equilibrium concentration of CV, mg/L r Correlation coefficient, dimensionless r² Predicted R-squared, dimensionless SUmistry of squares, sum of the squared differences between the average values and the overall mean rather average v	a_R	Redlich-Peterson isotherm constant, (L/mg)	$q_{\rm e,cal}$	Amount of CV adsorbed calculated at equilibrium, mg/g
C _c Equilibrium concentration of CV, mg/L r Corelation coefficient, dimensionless C _c Final concentration, mg/L r ² Coefficient of determination, dimensionless C _c Initial concentration of th species, mol/L r ² -Adj Adjusted R-squared, dimensionless C _c Concentration of CV at any time t, mg/L R Universal gas constant, 8.314 J/mol K, 1.987 cal/mol.K C _v Coefficient of variation SD Standard deviation df Degrees of freedom SS Sums of squares, sum of the squared differences between the average values and the overall mean E Sorption energy, kl/mol t Contact time, min F-value Test for comparing term variance with residual (error) V Volume of dye solution, 1 F-value Test for comparing term variance with residual (error) V Volume of dye solution, 1 F-value Factor for comparing term variance with residual (error) V Volume of dye solution, 1 F-value Factor for comparing term variance with residual (error) V Volume of dye solution, 1 F-value Factional attainment of adsorption equilibrium [\mathbf{b}_{T}	Temkin constant related to the heat of sorption indicating	$q_{\rm m}$	Maximum amount of CV adsorbed, mg/g
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1/b _T as the adsorption potential of the adsorbent, J/mol	q_t	Amount of CV adsorbed at time t, mg/g
C _i Ionic concentration of ith species, mol/L r²-Adj Adjusted R-squared, dimensionless r²-Pred r²-Pred r²-Predicted R-squared, dimensionless r²-Pred r²-Pred r²-Pred r²-Predicted R-squared, dimensionless r²-Pred r²-Pred r²-Predicted R-squared, dimensionless r²-Pred	C_{e}	Equilibrium concentration of CV, mg/L		Correlation coefficient, dimensionless
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{f}	Final concentration, mg/L		Coefficient of determination, dimensionless
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{i}	Ionic concentration of ith species, mol/L	r²-Adj	Adjusted R-squared, dimensionless
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_0	Initial concentration of CV, mg/L	r ² -Pred	Predicted R-squared, dimensionless
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{t}	Concentration of CV at any time t, mg/L	R	Universal gas constant, 8.314 J/mol K, 1.987 cal/mol.K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV%	Coefficient of variation	SD	Standard deviation
E Sorption energy, kJ/mol F Faraday constant, 96500C/mol F-value Test for comparing term variance with residual (error) V Volume of dye solution, l variance F(t) Fractional attainment of adsorption equilibrium $\begin{bmatrix} = \frac{q_t}{q_e} \\ q_e \end{bmatrix}, \begin{cases} x_i \\ p_a = x_i \\ q_e \end{bmatrix}, \begin{cases} x_i \\ p_a = x_i \\ p_a = x_i \end{cases}$ Factor (independent variable) Factor (independent variable) Redlich-Peterson isotherm exponent I Intercept in Weber-Morris intra-particle diffusion model, mg/g Is Ionic strength, mol/L k_1 Pseudo-first order adsorption kinetic rate constant, min^1 k_2 Pseudo-second order adsorption kinetic rate constant, g/mg.L.min k_6 Freundlich isotherm constant, (mol/g). (mol/L)^{-1/n} plice in the present of the system to the surface of the solid adsorbent, mol/d from the surface of the solid adsorbent, mol/d from the solid adsorbent from the bulk of the system to the surface of the solid adsorbent, mol/d from the solid adsorbent from the solid	df	Degrees of freedom	SS	Sums of squares, sum of the squared differences between
E Sorption energy, kJ/mol F Faraday constant, 96500C/mol F-value Test for comparing term variance with residual (error) V Volume of dye solution, l variance F(t) Fractional attainment of adsorption equilibrium $\begin{bmatrix} = \frac{q_t}{q_e} \\ q_e \end{bmatrix}, \begin{cases} x_i \\ p_a = x_i \\ q_e \end{bmatrix}, \begin{cases} x_i \\ p_a = x_i \\ p_a = x_i \end{cases}$ Factor (independent variable) Factor (independent variable) Redlich-Peterson isotherm exponent I Intercept in Weber-Morris intra-particle diffusion model, mg/g Is Ionic strength, mol/L k_1 Pseudo-first order adsorption kinetic rate constant, min^1 k_2 Pseudo-second order adsorption kinetic rate constant, g/mg.L.min k_6 Freundlich isotherm constant, (mol/g). (mol/L)^{-1/n} plice in the present of the system to the surface of the solid adsorbent, mol/d from the surface of the solid adsorbent, mol/d from the solid adsorbent from the bulk of the system to the surface of the solid adsorbent, mol/d from the solid adsorbent from the solid	D_{f}	Liquid film diffusion constant, min ⁻¹		the average values and the overall mean
F-value Test for comparing term variance with residual (error) wariance F(t) Fractional attainment of adsorption equilibrium $\begin{bmatrix} = \frac{q_t}{q_e} \\ q_e \end{bmatrix}$, $\begin{bmatrix} x_i \\ q_e \end{bmatrix}$ $\begin{bmatrix} x_i \\ q_e \end{bmatrix}$, $\begin{bmatrix} x_i \\ q_e \end{bmatrix}$ $\begin{bmatrix} x_i \\ x_j \end{bmatrix}$ Factor (independent variable) Factor (independent variable) Factor (independent variable) Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable) Y Response (dependent) variable Z Ionic charge upon ith species Factor (independent variable To independent variable Z Ionic charge upon ith species Factor (independent variable Z Ionic charge upon ith species Factor (independent variable To independent variable To independent variable Test or (independent variable Testor (independent variable Testor (independent variable	E		t	Contact time, min
variance variance F(t) Fractional attainment of adsorption equilibrium $\begin{bmatrix} = \frac{q_t}{q_c} \\ q_c \end{bmatrix}$, x_i Factor (independent variable) dimensionless Redlich-Peterson isotherm exponent Intercept in Weber-Morris intra-particle diffusion model, mg/g Is lonic strength, mol/L k_1 Pseudo-first order adsorption kinetic rate constant, min $^{-1}$ k_2 Pseudo-second order adsorption kinetic rate constant, g/ mg.L.min k_f Freundlich isotherm constant, (mol/g). (mol/L) $^{-1/n}$ k_d Rate constant [intra-particle diffusion], mg/g. (min) $^{0.5}$ k_G Redlich-Peterson isotherm constant (L/g) k_R Redlich-Peterson isotherm	F	Faraday constant, 96500C/mol	T	Absolute temperature, K
$F_{(t)} \qquad \text{Fractional attainment of adsorption equilibrium} \begin{bmatrix} =\frac{q_1}{q_e} \\ -\frac{q_e}{q_e} \end{bmatrix}, \qquad \begin{array}{l} x_i \\ x_j \\ x_j \\ \text{Factor (independent variable)} \\ \text{Factor (independent variable} \\ \text{Factor (independent variable})} \\ \text{Factor (independent variable)} \\ \text{Factor (independent variable} \\ Factor (independent varia$	F-value	Test for comparing term variance with residual (error)	V	Volume of dye solution, l
$ F_{(t)} \qquad \text{Fractional attainment of adsorption equilibrium } \begin{bmatrix} =\frac{q_t}{q_e} \\ -\frac{q_e}{q_e} \end{bmatrix}, \qquad \begin{matrix} x_i \\ x_j \\ x_j \\ \text{Factor (independent variable)} \\ x_j \\ \text{Factor (independent variable} \\ x_j \\ Factor (indepe$		variance	W	
dimensionless γ Response (dependent) variable γ Response (dependent) variable γ Response (dependent) variable γ Response (dependent) variable γ Intercept in Weber-Morris intra-particle diffusion model, γ Intercept in Weber-Morris intra-particle diffusion model, γ Intercept in Weber-Morris intra-particle diffusion model, γ Response (dependent) variable γ Intercept in Weber-Morris intra-particle diffusion model, γ Response (dependent) variable γ Intercept in Weber-Morris intra-particle diffusion model, γ Response (dependent) variable γ Intercept γ Intercept γ Intercept γ Intercept γ Intercept γ Response (dependent) variable γ Intercept γ Intercept γ Intercept γ Intercept γ Intercept γ Intercept γ Response (dependent) variable γ Intercept γ Response (dependent) variable γ Intercept γ Intercept γ Intercept γ Intercept γ Intercept γ Intercept γ Response (dependent) variable γ Intercept γ	17	Fractional attainment of adaptation aguilibrium [-qt]	$\mathbf{X_{i}}$	=
dimensionless Redlich–Peterson isotherm exponent I Intercept in Weber-Morris intra-particle diffusion model, mg/g Is Ionic strength, mol/L k ₁ Pseudo-first order adsorption kinetic rate constant, min ⁻¹ k ₂ Pseudo-second order adsorption kinetic rate constant, g/ mg.L.min k ₃ Freundlich isotherm constant, (mol/g). (mol/L) ^{-1/n} k ₄ Rate constant [intra-particle diffusion], mg/g. (min) ^{0.5} k ₆ Freundlich constant, L/mg k ₇ Response (dependent) variable Z _i Ionic charge upon ith species Greek letters Greek letters Greek letters Greek letters Coefficient, β _i Coefficient for the linear effect β _{ii} Coefficient for the quadratic effect β _{ii} Coefficient for the interaction effect β _{ii} Coefficient for the interaction effect β _{ii} Coefficient for the padratic effect β _{ii} Coefficient for the underaction effect β _{ii} Coefficient for the padratic effect β _{ii} Coefficient for the interaction effect β _{ii} Coefficient for the interaction effect β _{ii} Coefficient for the bulk of the system to the surface of the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol ² /J ² k ₈ Sips isotherm model constant (L/g) K ₇ Temkin isotherm constant, L/gm Mass of the adsorbent per unit volume, W/V, g/mL Solid adsorbent, mol ² /J ² Chi-square, dimensionless E _w Dubinin–Radushkevich isotherm constant E _w Dubinin–Radushkevich isotherm constant E _w Ovacuum permeability, 8.854 × 10 ⁻¹² , C/V-m. Freundlich constant, dimensionless Electrical double layer thickness (EDL), 1/m	r _(t)	Fractional attainment of adsorption equinificant $\begin{bmatrix} = - \\ q_e \end{bmatrix}$,		=
Redlich–Peterson isotherm exponent I Intercept in Weber-Morris intra-particle diffusion model, mg/g Is Ionic strength, mol/L k ₁ Pseudo-first order adsorption kinetic rate constant, min - 1 k ₂ Pseudo-second order adsorption kinetic rate constant, g/ mg.L.min k ₃ Freundlich isotherm constant, (mol/g). (mol/L) - 1/n k ₄ Rate constant [intra-particle diffusion], mg/g. (min) - 5 K ₄ Halsey constant, dimensionless k ₄ Langmuir constant, L/mg k ₈ Redlich–Peterson isotherm constant (L/g) K ₇ Temkin isotherm constant, L/gm m Mass of the adsorbent per unit volume, W/V, g/mL MS Mean squares, sum of squares divided by df n Number of data points n _F Freundlich constant, dimensionless I Ionic charge upon ith species Greek letters Greek letters Greek letters Constant coefficient, β _i Coefficient for the linear effect β _{ii} Coefficient for the quadratic effect β _{ij} Coefficient for the interaction effect β _{ij} Coefficient for the interaction effect β _{ij} Coefficient for the interaction effect γ Mean energy of sorption per molecule of sorbate related to the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol ² /J ² k _S Sips isotherm model constant (L/g) γ Error κ _T Temkin isotherm constant, L/gm π Mass of the adsorbent per unit volume, W/V, g/mL ε Dubinin–Radushkevich isotherm constant ε _ν Dielectric constant of water, 78.5 η Number of data points ε _ν Vacuum permeability, 8.854 × 10 ⁻¹² , C/V-m. Γ Electrical double layer thickness (EDL), 1/m		dimensionless		=
Intercept in Weber-Morris intra-particle diffusion model, mg/g Is lonic strength, mol/L k ₁ Pseudo-first order adsorption kinetic rate constant, min ⁻¹ k ₂ Pseudo-second order adsorption kinetic rate constant, g/ mg.L.min k ₃ Coefficient for the linear effect mg.L.min k ₄ Freundlich isotherm constant, (mol/g). (mol/L) ^{-1/n} k ₆ Rate constant [intra-particle diffusion], mg/g. (min) ^{0.5} k ₇ Halsey constant, dimensionless k ₈ Redlich-Peterson isotherm constant (L/g) k ₈ Sips isotherm model constant (L/g) k ₈ Sips isotherm model constant, L/gm Mass of the adsorbent per unit volume, W/V, g/mL MS Mean squares, sum of squares divided by df Number of data points Freundlich constant, dimensionless Greek letters Goefficient for the linear effect	g	Redlich-Peterson isotherm exponent	Z_i	
In Ionic strength, mol/L k_1 Pseudo-first order adsorption kinetic rate constant, min $^{-1}$ β ₀ Constant coefficient, k_2 Pseudo-second order adsorption kinetic rate constant, g/g β _i Coefficient for the linear effect mg.L.min β _{ii} Coefficient for the quadratic effect k_f Freundlich isotherm constant, (mol/g). (mol/L) $^{-1/n}$ β _{ij} Coefficient for the interaction effect k_{id} Rate constant [intra-particle diffusion], mg/g. (min) $^{0.5}$ β Mean energy of sorption per molecule of sorbate related to the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol 2 /J 2 k_S Sips isotherm model constant (L/g) χ Error k_T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionless χ Dubinin–Radushkevich isotherm constant χ Dielectric constant of water, 78.5 χ Number of data points χ Vacuum permeability, 8.854 χ 10 $^{-12}$, C/V-m. χ Electrical double layer thickness (EDL), 1/m	I	Intercept in Weber-Morris intra-particle diffusion model,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mg/g	Greek letters	
Pseudo-second order adsorption kinetic rate constant, g/ β_i Coefficient for the linear effect mg.L.min β_{ii} Coefficient for the quadratic effect Coefficient for the quadratic effect Rate constant, (mol/g). (mol/L) $^{-1/n}$ β_{ii} Coefficient for the interaction effect Rate constant [intra-particle diffusion], mg/g. (min) $^{0.5}$ β Mean energy of sorption per molecule of sorbate related to the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol 2 /J 2 ks Sips isotherm model constant (L/g) γ Error KT Temkin isotherm constant, L/gm γ Chi-square, dimensionless γ Mass of the adsorbent per unit volume, W/V, g/mL γ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df γ Dielectric constant of water, 78.5 γ Vacuum permeability, 8.854 \times 10 $^{-12}$, C/V-m. γ Freundlich constant, dimensionless γ Electrical double layer thickness (EDL), 1/m	I_S			
k_2 Pseudo-second order adsorption kinetic rate constant, g/g $β_i$ Coefficient for the linear effect $mg.L.min$ $β_{ii}$ Coefficient for the quadratic effect k_f Freundlich isotherm constant, (mol/g) . $(mol/L)^{-1/n}$ $β_{ij}$ Coefficient for the interaction effect k_{id} Rate constant [intra-particle diffusion], mg/g . $(min)^{0.5}$ $β$ Mean energy of sorption per molecule of sorbate related to K_H Halsey constant, dimensionlessthe average energy of sorption as the dye molecule is k_L Langmuir constant, L/mg transferred from the bulk of the system to the surface of k_R Redlich-Peterson isotherm constant (L/g) $γ$ Error k_S Sips isotherm model constant (L/g) $γ$ Error k_T Temkin isotherm constant, L/gm $χ^2$ Chi-square, dimensionless m Mass of the adsorbent per unit volume, W/V , g/mL $ε$ Dubinin-Radushkevich isotherm constant m Mean squares, sum of squares divided by df $ε_w$ Dielectric constant of water, 78.5 n Number of data points $ε_o$ Vacuum permeability, 8.854×10^{-12} , $C/V-m$ n Freundlich constant, dimensionless $\frac{1}{r}$ Electrical double layer thickness (EDL), $1/m$	\mathbf{k}_1	Pseudo-first order adsorption kinetic rate constant, min ⁻¹	β_0	Constant coefficient,
mg.L.min k_f Freundlich isotherm constant, (mol/g). (mol/L) $^{-1/n}$ β_{ii} Coefficient for the quadratic effect k_{id} Rate constant [intra-particle diffusion], mg/g. (min) $^{0.5}$ β Mean energy of sorption per molecule of sorbate related to the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol 2 /J 2 ks Sips isotherm model constant (L/g) k_T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionless m Mass of the adsorbent per unit volume, W/V, g/mL ϵ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df ϵ Number of data points ϵ Vacuum permeability, 8.854 \times 10 $^{-12}$, C/V-m. Freundlich constant, dimensionless	k_2	Pseudo-second order adsorption kinetic rate constant, g/		Coefficient for the linear effect
$\begin{array}{llllllllllllllllllllllllllllllllllll$			_	Coefficient for the quadratic effect
k _{id} Rate constant [intra-particle diffusion], mg/g. (min) ^{0.5} β Mean energy of sorption per molecule of sorbate related to the average energy of sorption as the dye molecule is transferred from the bulk of the system to the surface of the solid adsorbent, mol ² /J ² k _S Sips isotherm constant (L/g) γ Error K _T Temkin isotherm constant, L/gm γ Chi-square, dimensionless γ Mass of the adsorbent per unit volume, W/V, g/mL γ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df γ Dielectric constant of water, 78.5 γ Number of data points γ Vacuum permeability, 8.854 γ 10 ⁻¹² , C/V-m. Freundlich constant, dimensionless γ Electrical double layer thickness (EDL), 1/m	k_f			Coefficient for the interaction effect
K_H Halsey constant, dimensionless the average energy of sorption as the dye molecule is k_L Langmuir constant, L/mg transferred from the bulk of the system to the surface of k_R Redlich–Peterson isotherm constant (L/g) the solid adsorbent, mol^2/J^2 k_S Sips isotherm model constant (L/g) γ Error K_T Temkin isotherm constant, L/gm γ^2 Chi-square, dimensionless γ^2 Mass of the adsorbent per unit volume, W/V, g/mL γ^2 Dubinin–Radushkevich isotherm constant γ^2 Mean squares, sum of squares divided by df γ^2 Dielectric constant of water, 78.5 γ^2 Number of data points γ^2 Vacuum permeability, 8.854 γ^2 10 ⁻¹² , C/V-m. Freundlich constant, dimensionless γ^2 Electrical double layer thickness (EDL), 1/m	k _{id}	Rate constant [intra-particle diffusion], mg/g. (min) ^{0.5}		Mean energy of sorption per molecule of sorbate related to
k _L Langmuir constant, L/mg transferred from the bulk of the system to the surface of k _R Redlich–Peterson isotherm constant (L/g) the solid adsorbent, mol^2/J^2 ks Sips isotherm model constant (L/g) γ Error K _T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionless Mass of the adsorbent per unit volume, W/V, g/mL ε Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df ε_w Dielectric constant of water, 78.5 Number of data points ε_o Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m Freundlich constant, dimensionless $\frac{1}{\varepsilon}$ Electrical double layer thickness (EDL), 1/m	K _H	Halsey constant, dimensionless	•	the average energy of sorption as the dye molecule is
k_R Redlich-Peterson isotherm constant (L/g)the solid adsorbent, mol^2/J^2 k_S Sips isotherm model constant (L/g) γ Error K_T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionlessmMass of the adsorbent per unit volume, W/V, g/mL ϵ Dubinin-Radushkevich isotherm constantMSMean squares, sum of squares divided by df ϵ_w Dielectric constant of water, 78.5nNumber of data points ϵ_o Vacuum permeability, 8.854×10^{-12} , C/V-m n_F Freundlich constant, dimensionless $\frac{1}{\epsilon}$ Electrical double layer thickness (EDL), $1/m$	$k_{\rm L}$	Langmuir constant, L/mg		
k _S Sips isotherm model constant (L/g) γ Error K _T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionless m Mass of the adsorbent per unit volume, W/V, g/mL ϵ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df ϵ_w Dielectric constant of water, 78.5 n Number of data points ϵ_o Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m n _F Freundlich constant, dimensionless $\frac{1}{\epsilon}$ Electrical double layer thickness (EDL), 1/m	k_R	Redlich-Peterson isotherm constant (L/g)		
K _T Temkin isotherm constant, L/gm χ^2 Chi-square, dimensionless m Mass of the adsorbent per unit volume, W/V, g/mL ϵ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df $\epsilon_{\rm w}$ Dielectric constant of water, 78.5 n Number of data points $\epsilon_{\rm o}$ Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m Freundlich constant, dimensionless $\frac{1}{\epsilon}$ Electrical double layer thickness (EDL), 1/m	k_S	Sips isotherm model constant (L/g)	γ	· ·
m Mass of the adsorbent per unit volume, W/V, g/mL ϵ Dubinin–Radushkevich isotherm constant MS Mean squares, sum of squares divided by df $\epsilon_{\rm w}$ Dielectric constant of water, 78.5 $\epsilon_{\rm o}$ Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m $\epsilon_{\rm o}$ Freundlich constant, dimensionless $\epsilon_{\rm w}$ Electrical double layer thickness (EDL), 1/m	K_{T}	Temkin isotherm constant, L/gm	χ^2	Chi-square, dimensionless
MS Mean squares, sum of squares divided by df ϵ_{w} Dielectric constant of water, 78.5 Number of data points ϵ_{o} Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m. Freundlich constant, dimensionless $\frac{1}{\epsilon}$ Electrical double layer thickness (EDL), 1/m	m	Mass of the adsorbent per unit volume, W/V, g/mL		* '
n Number of data points ϵ_{o} Vacuum permeability, 8.854 \times 10 ⁻¹² , C/V-m Freundlich constant, dimensionless $\frac{1}{r}$ Electrical double layer thickness (EDL), 1/m	MS	Mean squares, sum of squares divided by df	ϵ_{w}	
n_F Freundlich constant, dimensionless $\frac{1}{r}$ Electrical double layer thickness (EDL), $1/m$	n	Number of data points		·
· · · · · · · · · · · · · · · · · ·	$n_{\rm F}$	Freundlich constant, dimensionless		
n _H Halsey constant, dimensionless	n_H	Halsey constant, dimensionless	κ	•

tional metal oxide (Fe, Co and Ni oxides) nanoparticles [16] so on and forth.

The method of adsorption requires optimization of process variables alike any wastewater treatment method, and their influence to optimize the pollutant removal efficiency by the adsorbent. In adsorption, the solid-fluid interface plays the pivotal role in adsorbing the pollutant from the liquid stream. The process is intrinsically governed by various factors such as the contact time, initial adsorbate concentration, adsorbent dose, adsorbent surface area, functionalities over the adsorbent surface, operating solution pH, operating temperature and frequency of agitation of the solid-fluid slurry. Sometimes, the ionic strength of the solution also influences the adsorption process. Amongst these parameters, the influence of the contact time is necessarily investigated by rigorous experimentation for estimating the equilibrium time which classically constitutes the intrinsic design parameter for adsorption. The operating solution pH is necessarily dependent on the pHPZC of the adsorbent. Before, investigating or optimizing the solution pH, a sound knowledge of pH_{PZC} is required based on which the domain of the operating pH is selected. The effluent discharge limitation of pH of the treated wastewater will further augment to consolidate the domain of the operating pH. In the light of these observations, optimizing the remaining process variables by the

traditional methods reflecting the influence of the interactions among these variables on the dependent variable such as the percentage removal would become tedious and time consuming considering the requirement of a large number of experimental runs [17].

In the recent past, investigations have also been carried out to optimize the variables by linear- and non-linear- modeling as well as by multivariable process optimization [17]. In recent years, Response Surface Methodology (RSM), a collection of mathematical and statistical techniques, is gaining considerable attention by the researchers as a useful tool for modeling and analysis for investigating into the response of interest influenced by several variables by simultaneously varying them [18]. The RSM further allows one to perform only the limited number of experiments and is often employed for multiple regression analyses. There are three forms of RSM designs such as the central composite design (CCD), Box-Behnken design (BBD) and Doptimal design [19]. Amongst these, the CCD is the most widely used form of RSM employed to evaluate the effects as well as to optimize the various process variables for achieving the desired output. The experimental design followed from the optimization employing CCD under RSM has also been reported in the literature for adsorption of dyes including CV onto various adsorbents from aqueous solutions [16,20]. However, these studies are all limited to conventional batch experi-

Download English Version:

https://daneshyari.com/en/article/4908384

Download Persian Version:

https://daneshyari.com/article/4908384

Daneshyari.com