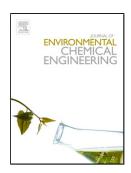
Accepted Manuscript

Title: Degradation of Textile Wastewater by Modified Photo-Fenton Process: Application of Co(II) Adsorbed Surfactant-modified Alumina as Heterogeneous Catalyst

Authors: Prateeksha Mahamallik, Anjali Pal

PII: S2213-3437(17)30235-X

DOI: http://dx.doi.org/doi:10.1016/j.jece.2017.05.044


Reference: JECE 1647

To appear in:

Received date: 6-2-2017 Revised date: 30-4-2017 Accepted date: 28-5-2017

Please cite this article as: Prateeksha Mahamallik, Anjali Pal, Degradation of Textile Wastewater by Modified Photo-Fenton Process: Application of Co(II) Adsorbed Surfactant-modified Alumina as Heterogeneous Catalyst, Journal of Environmental Chemical Engineeringhttp://dx.doi.org/10.1016/j.jece.2017.05.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Degradation of Textile Wastewater by Modified Photo-Fenton Process: Application of

Co(II) Adsorbed Surfactant-modified Alumina as Heterogeneous Catalyst

Prateeksha Mahamallik, Anjali Pal*

Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India

correspondence: Anjali Pal, Department of Civil Engineering, IIT Kharagpur, India. Phone: 91-3222-

281920, FAX: 91-3222-282254, E-mail: anjalipal@civil.iitkgp.ernet.in

ABSTRACT

Fenton method is well recognized for organic pollutant degradation. However, traditional Fenton method has several drawbacks for practical application. In this regard different catalysts and modified Fenton processes are developed for better efficiency. In this study, a new catalyst is developed for methylene blue (MB) and methyl orange (MO) degradation under heterogeneous photo-Fenton process in presence of H₂O₂ and visible light. Finally, the catalyst was successfully applied for real textile wastewater degradation also. Here the asprepared catalyst is the Co(II), which is adsorbed on the bilayer structure of sodium dodecyl sulfate (an anionic surfactant) formed on alumina support. The catalyst is designated as Co-SMA. The degradation characteristics of both the dyes are discussed. The MB, being a cationic dye, gets fully adsorbed on Co-SMA surface and the reaction proceeds on the solid surface with zero order kinetics. On the other hand, the degradation of MO follows first order kinetics because of its low adsorption. The efficiency of decolorization of real wastewater is found to be > 92% in 60 min time of reaction with 10 g L⁻¹ of Co-SMA, 37.9 mM H₂O₂ and 10010 lux light intensity. Leaching of cobalt from Co-SMA is very less during the reaction which is advantageous for environmental applications.

1

Download English Version:

https://daneshyari.com/en/article/4908434

Download Persian Version:

https://daneshyari.com/article/4908434

Daneshyari.com