Accepted Manuscript

Penetration of aerobic bacteria into meat: A mechanistic understanding

Hiroaki Shirai, Ashim K. Datta, Seiichi Oshita, Yoshio Makino

PII: S0260-8774(16)30373-9

DOI: 10.1016/j.jfoodeng.2016.10.012

Reference: JFOE 8689

To appear in: Journal of Food Engineering

Received Date: 9 May 2016

Revised Date: 4 October 2016

Accepted Date: 9 October 2016

Please cite this article as: Shirai, H., Datta, A.K., Oshita, S., Makino, Y., Penetration of aerobic bacteria into meat: A mechanistic understanding, *Journal of Food Engineering* (2016), doi: 10.1016/j.jfoodeng.2016.10.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Penetration of aerobic bacteria into meat: a mechanistic understanding
2	
3	Hiroaki Shirai ^a , Ashim K. Datta ^{b*} , Seiichi Oshita ^a , Yoshio Makino ^a
4	
5	^a Department of Biological and Environmental Engineering, Graduate School of Agricultural
6	and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
7	^b Department of Biological and Environmental Engineering, Cornell University, 208
8	Riley-Robb Hall, Ithaca, NY 14853-5701, USA
9	
10	*Corresponding author
11	Ashim K. Datta
12	Tel: +1 607 255 2482
13	Fax: +1 607 255 4449
14	Email: akd1@cornell.edu
15	Address: Cornell University, 208 Riley-Robb Hall, Ithaca, NY 14853-5701, USA
16	
17	Abstract
18	Understanding bacterial penetration into meat is critical to make it safe for consumption. A
19	mathematical model for transport of aerobic bacteria into meat was developed that
20	includes bacterial motility, chemotaxis driven by oxygen concentration, and growth. The
21	effect of proteolysis was also included in the model and the proteolytic kinetic parameters
22	of <i>Pseudomonas</i> spp. on sarcoplasmic protein from poultry were measured. Deeper
23	penetration into the meat due to motility is counteracted by chemotaxis toward the
24	surface where oxygen concentration is higher and by a reduction in motility at deeper
25	locations due to oxygen starvation. More rapid bacterial penetration during proteolysis is
26	due to both high motility and increased oxygen diffusion (reduced starvation and
27	chemotaxis) in a reduced viscosity fluid caused by the degradation of the sarcoplasmic
28	protein. Penetration rates in both proteolytic and non-proteolytic bacteria are affected
29	more by oxygen starvation than by chemotaxis toward oxygen.
30	r
31	1. Introduction

World meat consumption continues to increase (FAO, 2003). When inspecting meat for bacteriological safety, the degree of contamination is checked using, e.g., the swab Download English Version:

https://daneshyari.com/en/article/4909214

Download Persian Version:

https://daneshyari.com/article/4909214

Daneshyari.com