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a b s t r a c t

The mechanism of wet grinding is still an object of interest and the better estimation of grinding kinetics
provides greater benefits in terms of energy saving. The primary objective of this paper is to investigate
reasons and causative factors contributing to nonlinearities in breakage rates for wet grinding systems. In
ball milling the breakage rates vary mainly with the size distribution of the powder generated in the mill.
1st order and 2nd order breakage kinetics have been considered in this work to provide detailed insight
into the mechanism of milling during wet grinding operations. Two methods have been used for breakage
rate parameter estimation: cumulative input procedure and incremental input procedure. These methods
are compared against each other to get a better understanding of how breakage rates evolve. Three
different ore types are used as natural and monosized feeds. Results derived from both methods have
been lucidly explained. The 2nd order specific selection functions, based on incremental inputs of specific
energy, displayed inherent nonlinearities in the wet grinding process. It was observed that the breakage
rates varied with the size consist in the mill for all three ore types.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Comminution has predominantly been the fundamental step in
the process of extraction of valuable minerals and metals from ore
bodies. Grinding processes and operations, in particular, have
always been at the forefront of comminution-related works.
Grinding operations are of immense and specific importance to
mineral processing and cement industries, since fifty percent of
the cost of metal production is incurred in crushing and grinding.

Several attempts at predicting and determining the accuracy of
population balance modeling for industrial mill scale-up designs
for dry ball mill grinding systems have been made in the recent
past (Herbst et al., 1973; Malghan, 1975; Malghan and Fuerstenau,
1976). Correlation of derived selection and breakage functions
with mill diameter is the most fundamental step (Malghan,
1975; Malghan and Fuerstenau, 1976).

Population balance modeling for scale-up of ball mills for wet
grinding purposes is a relatively new and novel approach. From
an industrial perspective, wet grinding is more significant and
common than dry grinding. Wet grinding processes encumber
the treatment and analysis of inherent and innate nonlinearities

that result directly due to the breakage process of particle popula-
tions in ball mills (Herbst, 1971; Kim, 1974). A linearized popula-
tion balance model adept for wet grinding purposes can have its
parameters correlated with specific mill operating variables in a
metaphoric fashion, quite akin to its correlation with the specific
power draft used in dry grinding processes. This, in turn, can help
explain the exact consequence of mill design variables on the
grinding process and on scale-up.

The primary objective of this paper is to investigate reasons and
causative factors contributing to nonlinearities in breakage
rates for wet grinding systems. An energy-discretized approach
helps in understanding the relationship between particle breakage
rates and specific energy input, which, in turn, may prove useful for
improving mill efficiency for wet grinding processes. Three
different ore bodies have been used to illustrate the variation in
breakage rate behavior. Narrow inputs of specific energy in an
incremental manner are used to illustrate the ability of the popu-
lation balance model to predict product particle size distributions.
1st order incremental inputs of specific energy fully illustrates the
increase in breakage rates for coarser size fractions of the particle
population, with a subsequent decrease in the breakage rates for
finer size fractions, as a function of fulcrum position. Here, fulcrum
denotes the approximate particle size above which breakage rate
increases and below which breakage rate decreases. Detailed
description of parameter estimation for predictive simulation has
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been discussed. Effect of variation in percent solids and slurry
filling have also been discussed, with close focus on specific energy
input and the described fulcrum positions. Comparison of breakage
rates during grinding of mono-size material and natural size
material has also been discussed. The ores used in this study are
limestone ore (softest), quartzite ore (extremely hard and brittle),
and gold ore (extremely hard due to presence of granitic and gneis-
sic rock). Particulate environment present in the mill during wet
grinding processes has been effectively used to study and describe
the nonlinearities in breakage rates.

2. Modeling background

For the last the forty-five years, the population balance model
has been used for the analysis and simulation of the batch grinding
process. The well-known batch grinding equation is given as:

d½HmiðtÞ�
dt

¼ �SiðtÞHmiðtÞ þ
Xi�1

j¼1

bijSjðtÞHmjðtÞ ð1Þ

Under the assumption of constant hold-up, H, in the batch mills,

d½miðtÞ�
dt

¼ �SiðtÞmiðtÞ þ
Xi�1

j¼1

bijSjðtÞmjðtÞ ð2Þ

In Eq. (1), mi(t) defines the material mass fraction present in the
ith interval at any given time t. Si(t) characterizes the size-
discretized breakage rate function for the size interval i, thereby
accounting for the fractional rate of breakage of material from
the ith size interval. bij defines the size-discretized breakage func-
tion that denotes the fraction of the product material derived from
primary breakage in the jth interval and subsequently found in size
interval i (Herbst et al., 1973; Herbst, 1971). Size-discretized
breakage rate functions are usually dependent upon particle size
distribution in the mill at any arbitrary time t, given as;

SiðtÞ ¼ SiðmkðtÞÞ; for k ¼ 1;2; . . . ;n ð3Þ
These size-discretized selection functions are dependent on

particle size distribution, dependent on time since size distribution
varies with time (Herbst et al., 1973; Herbst, 1971; Kim, 1974). A
case of linearity of such a kinetic model with constant coefficients
is considered valid when the size-discretized selection and break-
age functions are individually independent of the particle size dis-
tribution in the mill (Herbst, 1971; Kim, 1974).

The size-discretized breakage functions are independent of the
particle size distribution within the mill. The breakage functions
are assumed to be a material property and not dependent on the
milling environment oroperating conditions.Hence, this is givenby:

bij–bijðH;miðtÞÞ for i ¼ 1;2; . . . ;n ð4Þ
Further the normalizability assumption is invoked,

bij ¼ bi�jþ1;1 ð5Þ
Under this assumption the breakage function for all sizes
(bi2; bi3; . . . :bi;n�1Þ are obtained directly from bi1. Hence, one needs
to estimate bi1 only from experiments.

The model Eq. (2) can be transformed into energy normalized
PBM (population balance model). Under the assumption the power
draw is constant,

E ¼ Pt=H ð6Þ
where P is the power (kW), t is the batch grinding time (min) and H
is the ore mass-hold up in the mill (kg).

d½miðEÞ�
dt

¼ �SEi miðEÞ þ
Xi�1

j¼1

bijS
E
j mjðEÞ ð7Þ

The energy normalized Eq. (7) implies that the particle size dis-
tribution evolves with the specific energy input (kW h/ton), in con-
formity with the fundamental laws of grinding such as Bond’s or
Rittinger’s law.

Following the assumption in the linear model formulation of (1)
SEi could be considered constant, a case often observed in dry grind-

ing of ores. However, in wet grinding SEi changes depending on the
size distribution within the mill. In all cases, bij, is considered con-
stant since it is a pure material property.

3. Estimation of breakage rates and breakage distribution

Hereafter, we restrict ourselves to the discussion of breakage
rates in the energy normalized PBM Eq. (7). The relationship illus-
trated in Eq. (7) clearly enunciates the advantage that SEi and bij can
be determined directly from milling experiments (Austin et al.,
1984; Herbst and Fuerstenau, 1968; Austin and Bhatia, 1971).
However, the linear model described in Eq. (7) is valid only for a
short duration of grinding time because the breakage rate SEi
changes with the size distribution of powder in the mill.

For the purpose of estimation of breakage rate functions it is
customary to use a functional form for breakage function.

Bij ¼ /ðxi=xjþ1Þa1 þ ð1� /Þðxi=xjþ1Þa2 ð8Þ
Thus the breakage function is described as a function of sieve

size ratios. The slopes a1 and a2 describes the slopes of the function
in the coarser and finer sizes. Likewise, a functional form would be
necessary to link the size dependent energy specific breakage rates.
Therefore, instead of estimating (n � 1) rate values, it can be
reduced to two or three. The functional form adopted in this work
is:

SEi ¼ SE1expfn1½lnð�xi=�x1Þ�g ð9Þ
for first order function and

SEi ¼ SE1expfn1½lnð�xi=�x1Þ� þ n2½lnð�xi=�x1Þ�2g ð10Þ
for the second order function. The first order function is a straight
line in the usual logarithmic plot and hence easy to understand
the nonlinearities via thus function. Although, slightly more com-
plex, the second order function introduces a parabolic curve in
the logarithmic plot.

The solution of the model in Eq. (7) is well known. Therefore,

the estimation of unknown parameters /;a1;a2; S
E
1; n1; n2

� �
is

accomplished by minimizing the objective function

X ¼
Xm
i¼1

Xn
j¼1

mexp
ij �mmodel

ij

� �2
,

ðmn� pÞ ð11Þ

where the summation is over m grind times and n sizes. The square
root of X root mean squared value (RMS) has implications in statis-
tics of the linear model fitting. But here we use RMS to simply asses
the quality of fit. The denominator denotes the degrees of freedom
of the sum of squares in the numerator. Here p denotes the number
of parameters used to estimate the selection function (2 for first
order and 3 for second order).

When a model is fitted, it is imperative that the number of
parameters searched for is a few as possible. In batch grinding
modeling it is well known that at least the breakage function
ð/;a1;a2Þ can be determined from monosize grinding data. The
method is known as ‘‘Zero order production of fines” (Herbst and
Fuerstenau, 1968).

Briefly stated, the method requires first the estimation of S1.
This is done by plotting the fraction remaining in the top (coarsest
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