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a b s t r a c t

Grade Engineering� spans a range of operational techniques that exploits intrinsic grade variability to
remove low grade uneconomic material prior to energy intensive and inefficient grinding.
Grade Engineering provides an additional level of operational flexibility while also incurring complex-

ity that needs to be managed for an effective operational deployment. An integrated value driven
methodology has been developed to manage this complexity by means of stochastic optimisation. This
allows the optimum Grade Engineering processing ‘‘recipe” to be determined that maximises value per
unit of time that can be drawn from a production volume under a set of user defined constraints. The
introduction of uncertainty in the stochastic optimisation problem enables the assessment of the risk
and operating robustness, both essential in robust decision-making processes.
The case study discussed in the paper comprises a large open cut copper porphyry deposit for which

two Grade Engineering strategies are assessed: differential blasting for grade, and preferential grade by
size response. These size-based coarse separation levers are subsequently exploited through a Grade
Engineering circuit. This comprises a set of screens and crushers, with a configuration and operating set-
tings defined by the Grade Engineering recipe.
The methodology developed demonstrated that size-based Grade engineering is a robust operating

option that can effectively deliver significant improvements in unit metal productivity.
� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Mining moving towards a manufacturing industry through
flexibility

The global mining industry is currently focused on improving
unit metal productivity and energy efficiency in order to fulfil
increasing demand for natural resources. These are currently being
impacted by increases in processing costs and the trend of reduced
ore body grade (Napier-Munn, 2015; Bearman, 2012; Prior et al.,
2012; Topp et al., 2008).

Novel operating strategies such as flexible circuits (Powell et al.,
2014; Foggiatto et al., 2014; Powell and Bye, 2009) and Grade Engi-
neering (Walters, 2016; Carrasco et al., 2016a, 2016b, 2016c) seek
to provide an additional level of operating flexibility to exploit
inherent ore body variability, enabling resource as well as process
optimisation. Nevertheless, this flexibility presents significant

challenges to the current standard operating philosophy which is
mainly focused on maximising material quantity, rather than
quality.

Industries with a significant level of flexibility such as manufac-
turing, chemical and oil and gas have coped with the associated
complexity through the development of decision support and exe-
cution systems (Engell and Harjunkoski, 2012; Frost and Sullivan,
2010; Scholten, 2007; ANSI/ISA-95, 2005). This has been done in
conjunction with new approaches to data integration to under-
stand the impact of flexible operation decisions across the entire
system value chain (Engell and Harjunkoski, 2012; Harjunkoski
et al., 2009; Wassick, 2009; Smith, 2005; Sakizlis et al., 2004). A
clear example of this flexibility successfully implemented in the
refining process of the oil and gas industry is discussed in this
paper. This process can be divided into three areas: crude opera-
tion, production and blending.

A variety of crude oil can be fed to the production plant, charac-
terised by its flexibility to accommodate a range of flow rates, com-
positions and physical/chemical properties (density, flash point,
etc.) to produce a variety of saleable products. These are subse-
quently blended to meet a dynamic product demand. However,
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variability in feed characteristics are often difficult to quantify and
are therefore uncertain (e.g. inconsistencies in the feed stock, cou-
pled with variations in the performance of upstream processes)
(Mesfin and Shuhaimi, 2010; Cao et al., 2009). Hence the problem
in this flexible production environment is to make the process eco-
nomically optimal, but still feasible under uncertain feed condi-
tions. As these decisions are made in close to real time, it is
essential to take into account the possible nonlinearities in process
operations through detailed process models. This is in opposition
to simple linear representations of production processes that are
generally adequate for strategic/long term based decisions
(Newman et al., 2010; Wassick, 2009).

This has been addressed through process optimisation under
uncertainty, also referred to as stochastic optimisation (Navia
et al., 2014; Birge and Louveaux, 2010; Sahinidis, 2004; Wendt
et al., 2002). This aims to deliver robust processing decisions which
have been extensively applied across process design, operation and
control (Gabrel et al., 2014; Sahinidis, 2004) in the aforementioned
industries, and to a lesser extent, in mining. A novel decision sup-
port tool referred to as Ore Logic� has been developed to support
Grade Engineering deployment at an open cut copper porphyry
deposit. Two GE size based separation techniques are extensively
analysed; preferential grade by size deportment (Carrasco et al.,
2016a, 2014; Carrasco, 2013) and differential blasting for grade
(Carrasco et al., 2016c).

The former refers to a natural based rock property whereby a
significant metal proportion preferentially deports into specific
size fractions after breakage. Differential blasting aims to change
blast product fragmentation to ‘‘induce” grade by size deportment
through the exploitation of deposit spatial grade heterogeneity
characteristic. This relates the presence of spatial high grade and
low grade discrete clusters within a certain production volume
originally assigned to a single destination (e.g. waste, leach, and
mill) based on its average grade. In differential blasting for grade,
high levels of energy are applied to high grade pockets and low
energy is imported to low grade zones, allowing high and low
grade cluster fragmented rock to be separated based on their dif-
ferent particle size distributions, via screening.

These size based separation responses are exploited through a
Grade Engineering circuit, consisting of a set of screens and a
crusher, which were modelled with the widely accepted JKMRC
performance models (Napier-Munn et al., 1996) to better describe
the nonlinear interaction between rock based properties and
equipment performance.

This tool enables the Grade Engineering (GE) strategy to be
assessed not merely for value, but for robustness and flexibility.
Ore Logic� comprises 5 modules as shown in Fig. 1. The first

module is associated with uncertainty modelling, where informa-
tion from an industrial GE screening trial has been employed.
The aim is to estimate the probability density distributions of the
GE inputs later used in the stochastic optimisation module
(Carrasco et al., 2016d). The second module takes into account
variations in comminution and flotation performance due to
changes in standard mill feed particle size distributions (Carrasco
et al., 2016c). The third module predicts changes in grade by size
responses due to breakage, using a statistically robust coarse liber-
ation model (Carrasco et al., 2016b). The fourth module employs
the aforementioned inputs to perform a chance constraint stochas-
tic optimisation (Mesfin and Shuhaimi, 2010; Li et al., 2008;
Sahinidis, 2004) through sample average approximation (Shapiro,
2013; Pagnoncelli et al., 2009; Shapiro and Wardi, 1996) and a cus-
tomised genetic algorithm. This determines the optimum material
processing destination, a GE processing recipe consisting of the
optimum processing path and GE operating settings (screen aper-
tures and crusher closed side setting). The final Ore Logic compo-
nent, data analysis, performs comparative statistical tests (e.g. t-
test) and a robustness analysis analysing the interaction between
the objective function and the feasible region defined by the
constraints.

2. Optimisation under uncertainty (stochastic optimisation)

Optimisation under uncertainty or stochastic optimisation
refers to a collection of methods for minimising or maximising
an objective function when uncertainty is present. Each of the
uncertain data inputs are described in terms of the probability dis-
tribution (e.g. Gaussian, log-normal) while its correlation with
other variables is also characterised. These uncertain variables
are propagated through the process to the output variables. The
aim is to integrate the available stochastic information in the opti-
misation problem.

Stochastic problems can be essentially divided into two differ-
ent categories, those which involve a sequence of decisions over
several time periods (multistage problems), or those involving a
single time period (single stage).

The multistage approaches seek to find an optimal sequence of
decisions over a certain period of time. This approach has been
extensively used in long term strategic scheduling and planning
problems. In mining this approach has received great attention in
the last decade (Dimitrakopoulos and Godoy, 2014; Montiel and
Dimitrakopoulos, 2013; Godoy, 2003; Dimitrakopoulos et al.,
2002). The uncertainty is modelled through geological conditional
simulation and therefore accounts for ore body knowledge uncer-
tainty. However, this is beyond the scope of this work.

Fig. 1. Ore Logic� structure.

C. Carrasco et al. /Minerals Engineering 99 (2016) 76–88 77



Download English Version:

https://daneshyari.com/en/article/4910309

Download Persian Version:

https://daneshyari.com/article/4910309

Daneshyari.com

https://daneshyari.com/en/article/4910309
https://daneshyari.com/article/4910309
https://daneshyari.com

