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Sedimentation processes of solid particles in a fluid with heat transfer are simulated using a coupled Lattice
Boltzmann Method, Immersed Boundary Method and Discrete Element Method (LBM-IBM-DEM) scheme. In
the numerical simulations, solid particles are specified either by a given temperature which is termed Dirichlet
boundary condition or by a temperature gradient which is termed Neumann boundary condition. Several cases
are examined containing one, two and 504 solid particles settling in a fluid, respectively. All the considered
cases could be divided into two groups: Group Dirichlet and Group Neumann according to different styles of
boundary conditions employed but under exactly the same initial states. The effects of these two boundary con-
ditions on the particle behavior are quantized.
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1. Introduction

A technique that seems simple at first is actually quite intricate and
affected by many uncertain factors, just like the Lattice Boltzmann
Method (LBM) modeling [1]. People may argue plenty of merits of the
LBM to solve various computational fluid dynamics (CFD) problems
[2], among which the most attractive one is definitely the ease in pro-
gramming. Especially when coupling with the immersed boundary
method (IBM) [3], the LBM-IBM scheme exhibits great flexibility and
potential in handling complicated fluid-structure coupling problems
such as the hydrodynamic interaction of elastic filaments [4,5], particu-
late-fluid interactions [6–8], natural convection of immersed obstacles
[9,10] and thermal particulate-fluid interactions [11–13] as focused in
this study.

Solid particles moving in a fluid with a different temperature in-
volves complex interaction behaviors leading to a number of non-linear
phenomena which is not well understood [14]. Full knowledge of not
only the heterogeneous distribution of the solid particles and tempera-
ture but also the essential heat transfer mechanisms is highly needed. It
was reported by Gan et al. [15] that the thermal convection could play
an important role in affecting the solid particle behavior. Gan et al.
[15] numerically identified a couple of Grashof-number dependent re-
gimes and the discrepancy of which was supposed to be caused by the
formation of microstructures of the trailing vortex or between the par-
ticles. In the numerical simulation within an Eulerian-Lagrangian
framework [16], the solid particles are either specified by a given

temperature which is termed the Dirichlet thermal boundary condition
(BC) or specified by a heat flux which is termed the Neumann thermal
BC. However, few studies have been conducted to quantize the effects
of these two thermal BC on the particle behavior which motivates the
present work. The subject does not sound fresh in the conventional
heat transfer cases [17] but still deserves a discussion in the context of
the LBM-IBMmodeling (major difficulty in treating the Neumann type
of thermal IBM [18,19] which is detailed later). Comparisons between
these two types of BC in the IBM were made by Zhang et al. based on
a typical case of flow over a stationary circular cylinder in which signif-
icantly different temperature patterns were reported [20]. Therefore, it
would be interesting to perform quantitative comparisons of the effects
of thermal BC on the particle behavior to characterize the difference.

The Dirichlet thermal BC has been relatively well established in the
framework of the LBM-IBM for the thermal particulate-fluid interac-
tions. Hashemi et al. carried out three-dimensional simulations of 1
and 30 particles, respectively, to investigate the settling of hot particles
in a cold Newtonian fluid with the effects of Reynolds, Prandtl and
Grashof numbers discussed [21]. It was found that the presence of
heat transfer can significantly alter the behavior of the settling particles
in a fluid. Similar findings were reported in the work of Yang et al. [13]
considering 2 particles and the present authors [11,12] considering 504
particles. In our previous works [11,12], a combined LBM-IBM-DEM
(DEM: discrete element method [22]) schemewas proposed to investi-
gate the sedimentation of solid particles in afluidwith heat transfer. The
DEMcalculates themacro behavior of the granularmaterial bymonitor-
ing the trajectories of every single particle as well as considering
the inter-particle collisions. Therefore, it is quite suitable for capturing
the distinctive feature of the solid particles and describing the
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heterogeneous distribution formed [23]. Meanwhile, both conventional
LBM and DEM use an explicit scheme to integral whichmakes the LBM-
IBM-DEM scheme favorably achieved. As a natural next step, we enable
another function of the LBM-IBM-DEM scheme to treat Neumann ther-
mal BC in this study. It is worthwhilementioning that the fluid variables
on the solid boundary were also evaluated explicitly in the early LBM-
IBM schemes [6,24] which may give rise to problems contrary to the
physics laws such as the flow penetration into the solid structure. En-
hanced treatments to conquer these drawbacks are the multi-direct
forcing scheme [25] and implicit correction schemes [26,27]. Numerical
investigations on the thermal particulate-fluid interactions via other
CFD-DEM modelings have been also reported [28–31], the Dirichlet
thermal BC was applied in which the heating process of solid particles
by the hot gas was mainly addressed.

There is much less work focusing on the Neumann type of thermal
BC in the framework of LBM-IBM. Recent publications are mainly limit-
ed by the explicit scheme proposed byHu et al. [18] and the implicit one
proposed byWang et al. [19]. Hu et al. [18] proposed a direct method to
deal with the Neumann thermal BC by distributing the jump of the heat
flux on the boundary into the nearby Eulerian points. The basic idea is to
find proper weight parameters to construct the solid temperature jump
function based on those at the LBM nodes both inside and outside the
particle occupied region. The proposed Neumann thermal BC was then
used to investigate the natural convection in a horizontal annulus
forming multiple steady solutions. Instead, Wang et al. [19] introduced
two layers of discrete Lagrangian points on the both sides of the solid
physical surface, the temperature correction (related to heat source)
on the Lagrangian points were treated as unknowns and thus enabled
an implicit calculation. The advantage of the implicit treatment is its ca-
pability to guarantee the fit between the calculated temperature gradi-
ent at the solid boundary and the specified one. To the best of our
knowledge, there is no LBM-IBM-DEMsimulation on the thermal partic-
ulate-fluid coupling problem via theNeumann thermal BC in the public-
ly available references. So, the aim of the current paper is two-fold. The
first goal is to examine the effect of the Neumann thermal BC on the
solid particle behavior in a thermal fluid. The second one is to character-
ize the difference between the two thermal BCs as mentioned afore.

The remainder of the paper is organized as follows. To make this
paper self-contained, the mathematics of the LBM, IBM for the Dirichlet
and Neumann types of BC and DEM are briefly introduced in Section 2.
For the Neumann thermal BC, the explicit scheme of Hu et al. [18] is
inherited in this study. And it is noted that we abandon any iterative
or implicit techniques [18] in the IBMmainly to save the computational
time. As Yu and Xu pointed out, the expansive part in simulating a par-
ticulate-fluid system is mainly related to the solid phase rather than the
CFD side [32]. The statement has been proved valid by the development
of the state-of-art modeling techniques of the recent decade. A proper
simplification on the coupling scheme can be therefore tolerated
especially when treating inter-particle collisions dominating systems
[33,34] like those focused in this study. Our numerical experiments
show that this treatmentworkswell in general. In Section 3, the current
code for theNeumann thermal BC isfirstly validated through comparing
with reference results and then case studies of (1) one cold particle set-
tling in a channel, (2) two particles settling in a channel, and (3) 504
cold particles settling in a cavity are presented. All the considered
cases could be divided into two groups: GroupDirichlet and GroupNeu-
mann according to different styles of BC employed but under exactly the
same initial states. The effects of these BC on the particle behavior are
quantized. Finally, conclusions are given in Section 4.

2. Governing equations

In this section, we briefly summarize the governing equations and
numerical issues. Since the LBM-IBM treatments on the velocity and
thermal BC are in quite similar manners no matter using the Dirichlet
or Neumann types, it would be straightforward to introduce them

following the same system with the main difference highlighted. For
more details, the readers are referred to our previous works in two-di-
mensional [35,11] and three-dimensional [36,12] cases based on the
Dirichlet thermal BC and two-dimensional case [18] based on the Neu-
mann thermal BC.

2.1. Lattice Boltzmann method

In this study, we limit all the discussions in two-dimensional cases
where the LBM-D2Q9 model [1] is adopted to simulate the heat and
mass transfer behavior of an incompressible Newtonian fluid. The
governing equations are the dual distribution models proposed by He
et al. [37] as shown below

f α rþ eαδt ; t þ δtð Þ ¼ f α r; tð Þ− f α r; tð Þ− f eqα r; tð Þ
τ f

þ Fαδt ; for density

gα rþ eαδt ; t þ δtð Þ ¼ gα r; tð Þ− gα r; tð Þ−geqα r; tð Þ
τg

þ Gαδt ; for temperature

8>>><
>>>:

ð1Þ

where fα(r, t) and gα(r, t) represent the fluid density and temperature
distribution functions, respectively. The superscript eq means
equilibrium

f eqα r; tð Þ ¼ ρωα 1þ 3 eα � uð Þ þ 9
2

eα � uð Þ2−3
2
ju2

� �
; for density

geqα r; tð Þ ¼ Tωα 1þ 3 eα � uð Þ þ 9
2

eα � uð Þ2−3
2
ju2

� �
; for temperature

8>>><
>>>:

ð2Þ

where r is the space position vector, eα is the fluid velocity, δt is the
discrete time step, the index α runs from 0 to 8 standing for different
fluid moving directions which is the unique feature of the LBM-
DNQN model [1], the values of the weights are: ω0=4/9, ωα=1/9
for α=1−4 and ωα=1/36 for α=5−8, u, ρ and T are the macro
fluid velocity, density and temperature, respectively. t denotes
time, τf and τg denote the non-dimensional relaxation times of the
density and temperature evolutions, respectively, which can be
expressed as

τ f ¼
Lcuc

Rec2s δt
þ 0:5; for density

τg ¼ Lcuc

RePrc2s δt
þ 0:5; for temperature

8>>><
>>>:

ð3Þ

where c is the lattice speed and cs is the lattice speed of sound, Lc and
uc are the characteristic length and velocity, respectively, and Re, Pr
and Ra are the Reynolds, Prandtl and Rayleigh numbers, respectively

Ra ¼

cpρβL3cΔT
kμ

; for Dirichletthermal BC

cpρ2gβL4c Q

k2μ
; for Neumannthermal BC

8>>>><
>>>>:

ð4Þ

where cp, k, β, μ, ΔT and Q are the specific heat capacity, thermal con-
ductivity coefficient, thermal expansion coefficient, kinetic viscosity,
temperature difference and heat flux, respectively. Pr=cpμ/k and the
Grashof number is Gr=Ra/Pr. At last, Fα and Gα in Eq. (1) are the
source terms which are evaluated via the IBM in Section 2.2.
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