Accepted Manuscript

Coupling of CFD with PBM for growth behavior of potassium sulfate in spray fluidized-bed crystallizer

Dan Zheng, Jun Li, Yang Jin, Da Zou, Xinhua Zhu

PII: S0032-5910(17)30096-7

DOI: doi:10.1016/j.powtec.2017.01.077

Reference: PTEC 12319

To appear in: Powder Technology

Received date: 13 September 2016 Revised date: 24 January 2017 Accepted date: 28 January 2017

Please cite this article as: Dan Zheng, Jun Li, Yang Jin, Da Zou, Xinhua Zhu, Coupling of CFD with PBM for growth behavior of potassium sulfate in spray fluidized-bed crystallizer, *Powder Technology* (2017), doi:10.1016/j.powtec.2017.01.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Coupling of CFD with PBM for growth behavior of potassium sulfate in spray fluidized-bed crystallizer

Dan Zheng, Jun Li *, Yang Jin, Da Zou and Xinhua Zhu

Department of Chemical Engineering, Sichuan University Chengdu, Sichuan 610065, P. R. China

* Corresponding author. Tel./fax: +86-28-85460936.

E-mail address: lijun@scu.edu.cn.

Abstract: In this work, a computational fluid dynamics (CFD) model coupled with population balance model (PBM) is applied to simulate the evolution of potassium sulphate particle growth process and the liquid-solid two-phase flow behaviors in a spray fluidized-bed crystallizer (SFBC). In order to describe the hydrodynamics of particles and the growth process fully, the kinetics model of particle growth, aggregation and breakage kernels are incorporated into the coupled model by using a user-defined function (UDF). Three particle breakage kernels based on the Kolmogorov turbulence theory (Coulaloglou and Tavlarides), attrition theory (Ghadari and Zhang) and kinetic energy theory (Luo and Svendsen) are considered in this work respectively. The three theories are modified to consider the particle flow behaviors and particle size distributions (PSD) under the same spray velocity. The CFD-PBM model is also used to predict the distributions of relative parameters in the liquid-solid two-phase flow in the SFBC via three breakage kernels. Furthermore, the variations of the solution temperature, particle velocity, crystallizer voidage and particle concentrations are obtained with consideration of particle growth process. The comparison and analysis of the kernels are studied and the simulation results show the difference among these breakage kernels. Meanwhile, the research reveals that the GZ kernel is better agreement with fluidization phenomenon, and it agrees well with experimental datas. This model provides essential information for crystallizer design and optimization.

Key words: population balance modeling, spray fluidized-bed crystallizer, breakage kernels, growth kinetics, sauter mean diameter

INTRODUCTION

The spray fluidized-bed crystallizer (SFBC) is a continuous classifying crystallizer and it has simple structure, low equipment cost and operating cost so that it is widely used in in coating, granulation, catalytic cracking, sedimentation and pharmaceutical industries etc [1]. The SFBC is a kind of crystallization equipment which enables the particles to suspend in the supersaturated solution. A mass of particles are suspended in an upward flow of the supersaturated solution through the crystallizer. As the

Download English Version:

https://daneshyari.com/en/article/4910488

Download Persian Version:

https://daneshyari.com/article/4910488

<u>Daneshyari.com</u>