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This paper investigatesmechanical behaviour and failure process of a 3Dnotched plate subjected to uni-axial ten-
sion using the discrete element method (DEM). The 3D notched plate consisted of different crystal structures,
such as simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC) and hexagonal close-packed
(HCP), where constituent spheres were bonded together by contact bond. The inclination angle of the notch
ranged from 0° to 90° with an increment of 15°. The aim of this study is to explore the effects of crystal packing
and notch inclination angle on the mechanical responses, crack initiation and propagation, and crack paths. The
proposedDEMmodelwas first verified for the pre-cracking behaviour by the corresponding FEM calculation, and
was confidently used to study the post-cracking behaviour. Numerical results reveal that the crack initiation and
propagation of crystal structures depend on the crystal configuration and notch inclination angle. The loading
stiffness of the four crystal structures follows the sequence of HCP N FCC N SC N BCC. The stress concentration fac-
tor shows a convex profile against notch inclination angle,with themaximumvalue at thenotch inclination angle
of 30° and the minimum value at the notch inclination angle of 90°. The SC and BCC crystal structures show a
symmetric feature of crack propagation, whilst the FCC and HCP crystal structures exhibit asymmetric character-
istics. In such a loading scenario, the crack initiation and propagation in all the four crystal structures are mainly
dominated by the tension failure mode.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The ideal crystal structure has an infinite 3D repetition of identical
atoms. However, real crystal structures are limited in size and have
some disorder (called defects) in stacking. The microscopic defects can
be classified into four kinds (Callister and Rethwisch [1]): (1) point de-
fects (vacancies, interstitials, and impurities); (2) line defects (edge and
screw dislocations); (3) planar defects (grain, tilt and twin boundaries,
and micro-cracks); and (4) volume defects (voids). These microscopic
defects degrade the material strength and greatly affect the mechanical
behaviour of the crystal structures subjected to a variety of loading sce-
narios. Especially when different crystal structures experience some
specific stress state, how the micro-cracks initiate and propagate in
the crystal structures and how themicrostructure influences themacro-
scopic behaviour are still inadequately understood by far.

Due to the limitation of measurement technology, experimentation
approaches may not be appropriate for 3D atom-level observation.

Alternatively, computational mechanics of discontinua is currently an
essential part of cutting edge research in different fields of solid me-
chanics. The problem of dynamic fracture in different kinds of materials
is still an open issue and continues to be a challenge for researchers.
Many researchers have studied this complex problem by means of di-
verse numerical methods. These numerical methods can be categorized
into eight groups: (1) themolecular dynamic (MD)method adopted by
Gao [2] and Furuya and Noguchi [3]; (2) the extended finite element
method (XFEM) first developed by Belytschko and Black [4]; (3) the
mesh-free method proposed by Belytschko et al. [5] and Belytschko
et al. [6]; (4) the finite element method (FEM) incorporated with cohe-
sive interface techniques proposed by Xu and Needleman [7]; (5) the
dual boundary element method (DBEM) together with fictitious crack
model proposed by Aliabadi and Saleh [8]; (6) the discrete element
method (DEM) with bonding theory proposed originally by Cundall
and Hart [9] and further complemented by Potyondy and Cundall
[10]; (7) the combined finite and discrete element method proposed
by Munjiza et al. [11] and Rabczuk and Belytschko [12]; and (8) the lat-
ticemodels proposed by Chiaia et al. [13] and adopted by Kosteski, et al.
[14]. Amongst these numerical methods, continuum based methods
such as FEM and BEM are restricted to severe element distortion,
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frequent re-meshing, and the need for continuum constitutive models
(Tavarez and Plesha [15]), so applying them to the problems with
severe damage is still a challenge. On the contrary, DEM (Cundall and
Strack [16]) has shown to be a powerful, versatile and natural numerical
tool for modelling the behaviour of particulate media, and also very
suitable for exploring the micro-mechanics at the particle level.
Equipped with appropriate bonded-particle models (BPM) (Potyondy
and Cundall [10]), DEM also provides a promising way to model solid

damage problems, giving a seamless transition from solid phase to par-
ticulate phase.

Vesga et al. [17] investigated the failure behaviour of a plate with an
inclined notch subjected to uni-axial compressive loading using 2D
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Fig. 1. Linear spring-dashpot model with a frictional slider for non-bonded spheres.
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Fig. 2. Contact-bond model for bonded spheres: (a) schematic of contact bond; (b) linear spring model.
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Fig. 3. Force-displacement relation for contact-bond model: (a) normal force; (b) shear force.
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Fig. 4. Schematic illustration of a plate made of different crystal structures.
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