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Predicting the performance of the semi-autogenous (SAG) mill is necessary for the best circuit design which is
possible by suitable modeling and simulation. Numerous models of the SAG mill are studied in the literature,
but the majority of them do not evaluate the predicted model for full-scale mill performance. Mill powers of
the semi-autogenous mill have an effective influence on the mill performance. In this regard, a new predictive
model based on gene expression programming (GEP) was developed to predict the mill power of the SAG mill.
To achieve this purpose, a total number of 186 full-scale SAGmill works were investigated and themost effective
parameters on SAGmill power, i.e., feedmoisture, mass flowrate,mill load cell weight, SAGmill solid percentage,
inlet and outlet water to the SAG mill and work index were measured and utilized to develop the GEP model. In
order to determine the relationship between the input and output parameters, the GEP model was developed
and the results were comparedwith non-linear multiple regression (NLMR)method. The results show the capa-
bility of the GEP model in predicting the mill power. It shows that the mill power is more sensitive to mass
flowrate and work index than other input parameters.
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1. Introduction

Semi-autogenous grinding (SAG) has been recently selected as the
primary stage of grinding due to the economic considerations in most
mining companies. SAG mills have some advantages such as lower
physical space requirements, lower investment and maintenance costs
and higher processing capacity, compared to the conventional circuits
[1]. However, it has greater complexity in operation and control because
of its large pieces of equipment. Semi-autogenous mill modeling is dif-
ficult because of the interaction between affecting parameters during
the process such as mill performance and feed characteristics and inac-
cessibility of appropriate full-scale circuit data [2]. The Bond approach is
based on the size reduction which follows as in Eq. (1):
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where W, Wi, P and F are the specific energy, the work index, the 80%
passing size for the product and the 80% passing size for the feed,
respectively.

The specific energy of a circuit is higher thanwhat this equation pre-
dicts; thus, it is assumed that this equation has less efficiency. Bond's
equationwith a high applicability is used for the comparison of different
circuit designs and specially the use of so-called “operatingwork index”
(OWi). The operating work index associated with Bond's equation is
written as [3]:
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The comparison of different circuits with different feed and product
sizes can be carried out using the operatingwork index in the theory [3].
The refinement of the Bondmodels andmore studies of mill charge de-
tailed characterization enhanced the development of several mill
powerdraw models [4,5]. Eq. (3) was developed by the Julius
Kruttschnitt Mineral Research Centre as:

PGross;JK ¼ PNo Load þ kPCharge ð3Þ

where, PGross,JK, PNo Load, PCharge and k are the mill powerdraw (kW), the
empty mill powerdraw (kW), the powerdraw of the entire contents of
the mill (kW) and a lumped mill powerdraw parameter, respectively
[6].
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The JA Herbst and Associates also developed the powerdraw model
(Eq. (4)):

PGross;JAH ¼ C3 sin αð ÞD0:3
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where PGross,JAH is the mill powerdraw (kW), N⁎ is the fractional critical
speed,WC is the charge mass (t), V⁎ is the mill fraction occupied by the
charge, α is the charge angle of repose (0); and C3 is a constant [7].

Apelt et al. combined the mill powerdraw, weight models and the
related plant measurement to study the indirect measurement of the
mill inventories. They showed that the investigation from the weight
based models has the least uncertainty [7]. Morrell also predicted the
specific energy of the AG and SAG mill using small diameter drill core
samples. They developed a new rock breakage characterization test to
generate a strength index that can be used for the specific energy of
AG and SAG mills [2]. Morrell presented a new method for predicting
the specific energy requirement of tumbling mill (grinding) circuits.
They showed that the energy utilization efficiency of all studied plant
grinding circuits had no significant difference [3]. Salazar et al. present-
ed the dynamic modeling and simulation of semi-autogenous mills for
predicting the time-evolution of product flow rate, level charge,
powerdraw and load position using the conventional non-stationary
population balance approach. This dynamic simulator can be used for
milling operations in order to design and evaluate the advanced control
schemes [1]. Completed models can be simulated with the lower risk of
not piloting than pilot-scale testworks based on a range of full-scale cir-
cuits [2].

This work investigates the use of feed moisture, mass flowrate, mill
load cell weight, SAG mill solid percentage, inlet and outlet water to
the SAG mill and work index to obtain the estimated mill power. The
SAG mill circuits can be optimized using the modeling and simulation
that can predict the throughput, power draw and product size distribu-
tion. For this aim, a new predictive model based on GEP is suggested to
estimate the SAGmill power. In order to show the capability of the con-
structed model in predicting SAG mill power, non-linear multiple re-
gression was performed. Finally, the performance predictions of the
developed models were compared and discussed.

2. Process description and data analysis

Statistical analysis of the dataset is performed based on the 186 SAG
mill operations collected from Aq Darreh gold processing plant 32 km
north of Takab city in West Azarbayjan province, Iran. The plant is

supplied from the Aq Darreh mine, at a distance of 12 km. The ore con-
tains about 3 ppm gold. Fig. 1 shows the grinding flowsheet of Aq
Darreh gold processing. Ore is fed to the jaw crusher for crushing after
passing from the grizzly screen. The crusher discharge is fed to the
SAG mill for grinding and mill discharge is classified by hydrocyclones.
The over flow of hydrocyclones is fed for leaching in order to recover
the gold and silver from the ore. The variables of feed moisture [M]
(%), mass flowrate [TPH] (t/h), mill load cell weight [LC] (t), SAG mill
solid percentage [S] (%), inlet [IW] (m3/h) and outlet water [OW] (m3/
h) to the SAG mill and work index [WI] (kWh/t) are measured for
modeling the SAG mill power [KW] (kW).

2.1. Data analysis

In datasets, the outlying data points can have an adverse influence
on the relationships clear understanding among the variables. In order
to make a predictable model of the SAG mill power, the outlying data
points are identified from the dataset to be eliminated for building a
more homogeneous dataset using multivariate statistical tools of the
principal components and factor analyses. The basic descriptive statisti-
cal analysis of the original dataset is shown in Table 1. The original
dataset box plot is shown in Fig. 2. As Fig. 2 shows, the median of
most data groups is not in the box center, which indicates their distribu-
tion is not symmetric. The variables of TPH, S and IW do not have any
outliers whereas M, OW, LC and WI have at least one outlier.

In order to detect the outliers and natural groups of data, the multi-
variate statistical tool of the principal components analysis is also used
[8,9]. It can be used for the dimension reduction for the problems with
high dimensions. Principal components in the PCA are the vectors
which explain themost variance of the dataset that is a linear combina-
tion of original variables. The dataset correlation matrix is obtained by
using the principal components analysis [10].

Table 2 shows the coefficients of the principal components. The per-
centage of variability explained for each principal component is shown
in Fig. 3 using the Pareto chart that shows the relative importance of the
differences between groups of data. It is an appropriate way for recog-
nizing the causes of quality problems or loss. It can be also used for de-
ciding the data group with the most attention [9]. The decrease in
component variance is shown with the columns in Fig. 3. As Fig. 3
shows, the highest component variance is thefirst principle component.
All variables in the first principal component and LC, WI and KW in the
second principal component have the absolute largest coefficients. In
the third component, M, LC, S, IW and KW are mainly weighted. The
scatter plot of the second principal component (PC2) versus the first
principal component (PC1) (Fig. 4) shows that there are no natural
groups in the dataset whereas the outlying data points (they were de-
termined with a red circle) can be seen in the dataset. The outlier data
(44 data)were removed from the original data to build amore homoge-
neous dataset that was used for the modeling.

Fig. 1. Primary grinding circuit process flowsheet.

Table 1
Basic descriptive statistics for the original database.

Variable Unit Minimum Maximum Mean Std.
deviation

Moisture (M) % 8.800 17.850 11.898 1.694
Mass flowrate (TPH) t/h 55.218 155.792 110.827 22.182
mill load cell weight
(LC)

t 61.040 142.100 98.116 12.486

SAG mill solid
percent (S)

% 59.300 68.000 64.815 2.085

Inlet water (IW) m3/h 17.830 74.300 51.304 13.768
Output water (OW) m3/h 10.400 115.5 85.520 19.816
Work index (WI) kWh/ton 10.488 24.340 15.001 2.713
Mill power (KW) kW 1225 1798 1607.488 135.818
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