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A B S T R A C T

This paper is concerned with asymptotic solutions of a nonlinear boundary value problem (BVP), which
arises in a study of laminar flow in a uniformly porous channel with retractable walls and an applied trans-
verse magnetic field. For different ranges of the control parameters (i.e. a, Re and M) arising in the BVP, four
cases are considered using different singular perturbation methods. For the first case, unlike those in the
existing literature, we make use of the Lighthill method and successfully construct an asymptotic solution
with high-order derivatives at the center of the channel. For the second case, under large suction we con-
sider M2 = O(1) and M2 = O(Re), respectively, which will further extend the applying range of asymptotic
solutions. In other cases, asymptotic solutions with a boundary layer are successfully constructed. In addi-
tion, numerical solutions presented for each case agree well with asymptotic solutions, which illustrates
that the asymptotic solutions constructed in this paper are more reliable. Finally, the influences of some
parameters on flow field are discussed to develop a better understanding of the flow problem.

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Blood circulating in the blood vessel has a strong effect on the
human body and also serves as one of the basic substances constitut-
ing the human body. Its dynamics is closely associated with people’s
health. For example, as said by Srivastava [1], atherosclerosis, a lead-
ing cause of death in many countries, is one of the phenomenon in
which the flow behaviour of the blood in the vessel will be influenced
by the intimal thickening of stenos artery. When severe stenosis sup-
presses the speed of blood, the blood supply and oxygen to the brain
are reduced. Under this situation some cells in the brain start to die
and then the resulting serious diseases will appear (e.g. strokes). So
studies of fluid transport in the vessel can serve to better understand
the functions of biological organisms (e.g. lung and cardiac).

When concerning systemic circulation in blood circulation, the
blood in the left ventricle is being forced into the aorta by systole
and the mitral valve between left ventricle and left atrium is closed.
At this juncture the left ventricle forms a vessel with one end closed.
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Meanwhile, the mass transfer of the vessel between inside and out-
side can be achieved by the seepage across permeable wall of the
vessel [2–4]. Furthermore, some idealized mathematical models are
proposed which consider the vessel to be permeable [5,6]. So studies
on such flow dynamics can be meaningful in the field of bioengi-
neering and medicine. In 1990, a mathematical model on the viscous
flow of Newtonian fluid inside a permeable tube with expanding or
contracting cross section was established by Goto and Uchida [7]. In
their work, a expansion ratio a and a cross-flow Reynolds number
Re (defined in Section 2) were introduced to measure the expansion
of the pipe and the mass transfer, respectively. Later, Dauenhauer
and Majdalani [8] considered the case that laminar flow in a porous
channel with expanding or contracting walls and thus established a
mathematical model. So far there have existed some studies on the
mathematical model. To list a few, one may count Majdalani et al. [9],
Asghar et al. [10] and Hang Xu et al. [11]. On the other hand, some of
medical literature have also shown that certain external factors can
change the hydrodynamic in blood flow. When the blood is regarded
as an electrically conducting fluid, the control of blood flow can be
achieved by the application of the magnetic field (Noting that the
fluid is often called as Magnetohydrodynamics or MHD). Based on
the experimental investigation, Karmilov [12] has revealed that the
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magnetic field exerted a most significant influence on the vascular
system. Subsequently, Sambasiva [13] also studied an unsteady MHD
blood flow through a porous channel with porous walls. So far, some
valuable results on MHD in a pipe have been reported. For example,
as said in [14], the effects of MHD on blood flow are as follows: i) to
reduce the high shear stress caused by stenosis and hence to prevent
the damage to the red and endothelial cells, which will help bioengi-
neers in the design of artificial organs and the treatment of vascular
diseases (e.g. [15–18]). ii) to delay the transition from laminar to tur-
bulent flow inside the blood vessel and thus reducing high intensity
shear zones, which are unfavorable to the blood and arterial wall.
This may be vital to watch out for the symptoms of a carotid artery
blockage (e.g. [19,20]). Motivated by above works, we have realized
the importance of magnetic field appearing in a model of laminar
flow in a porous pipe with expanding or contracting walls. However,
very little is known so far about the result of laminar flow in a porous
channel with expanding or contracting walls and an applied trans-
verse magnetic field. Therefore, based on the work [8], a principle
objective of the current study is to overcome a deficiency in their
model that does not account for the presence of a magnetic field. In
fact, the investigation of the steady flow of an electrically conduct-
ing viscous fluid through a semi-infinite flat plate with an applied
transverse magnetic field has been initiated by Suryaprakasrao [21],
who obtained an asymptotic solution for small Hartmann numbers
(defined in Section 2). Later, Terrill and Shrestha [22,23] extended
Suryaprakasrao’s work by considering laminar flow in a porous chan-
nel with motionless walls and an applied transverse magnetic field.
In their studies, based on either numerical or asymptotic approaches,
some solutions were obtained for both small and large Reynolds
numbers and all values of Hartmann number.

In fact, for the viscous flow in a porous channel with station-
ary walls, the earliest researcher can be traced back to Berman [24].
In his study, a nonlinear boundary value problem (BVP) with a
cross-flow Reynolds number Re was obtained from the classical
Navier-Stokes equations. For small Re, he constructed an asymptotic
solution using a regular perturbation method. Subsequently, a num-
ber of further studies about the existence of multiple solutions of
such a BVP followed shortly thereafter. Among these are the works
of Robinson [25], Skalak and Wang [26], Shih [27], Stephen [28]
and Lu [29–33]. Recently, when the walls of the channel were not
motionless, Hang Xu et al. [11] obtained three solutions for large
suction using homotopy analysis method (HAM). In addition, the
temporal and spatial stabilities have also considerable attention in
the past due to the existence of multiple solutions of the BVP, where
one may count Brady [34], Durlofsky and Brady [35], Sobey and
Drazin [36], Zaturska, Drazin and Banks [37].

The purpose of this paper is to extend previous investigations
by presenting asymptotic solutions for laminar flow in a porous
channel with expanding or contracting walls and an applied trans-
verse magnetic field. Specifically, in Section 2, by introducing the
flow geometry, governing equations with boundary conditions and
a stream function, a BVP (i.e. Eqs. (13)–(14)) including three param-
eters (i.e. a, Re and M) is obtained. In general, when constructing
a perturbation solution of the BVP, we should consider the order
of magnitude among these parameters, otherwise the perturbation
solution constructed is only valid for the limited scope of parameters.
Therefore, Section 3 serves to present asymptotic solutions for dif-
ferent cases. The asymptotic and numerical solutions are compared
and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Mathematical formulation of the problem

We assume that the channel is of semi-infinite length with one
closed end. In addition, to consider a two-dimensional flow, we
assume that the distance 2a between the porous walls is much

smaller than the channel’s width. Both sidewalls are assumed to have
equal permeability −vw and to expand or contract uniformly by a
time-dependent rate ȧ(t). As shown in Fig. 1, x and y indicate the
streamwise direction and the normal direction, respectively. u and
v denote the velocity components along x− and y−axes. The flow
velocity is zero at the closed end (x = 0). As a result, the motion
of a viscous incompressible and electrically conducting fluid through
a porous channel with an applied transverse magnetic field can be
described by the following equations:

∇ • V = 0, (1)

and

∂V
∂t

+ (V • ∇)V = − 1
q

∇p + m∇2V +
1
q

J × B, (2)

where J and B are given by the Maxwell equations

∇ × H = 4pJ, (3)

∇ × E = 0, (4)

∇ • B = 0, (5)

and Ohm’s law

J = s[E + V × B], (6)

where B = lmH, V = (u, v) and the symbols m, s , and lm represent
the viscosity of the fluid, the electrical conductivity and the magnetic
permeability, respectively.

For simplicity, we further assume that a constant magnetic field
of strength H0 is applied perpendicular to the walls and there is no
external electric field. Meanwhile, here the induced magnetic and
electric fields produced by the motion of the electrically conducting
fluid are neglected. With these assumptions the magnetic term J × B
in Eq. (2) reduces to

J × B = −sH2
0V. (7)

Fig. 1. Physical configuration.
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