Accepted Manuscript

CFD-PBE simulation to predict particle growth in a fluidized bed melt granulation batch process

Philipp Lau, Matthias Kind

PII: S0032-5910(16)30081-X

DOI: doi: 10.1016/j.powtec.2016.02.040

Reference: PTEC 11519

To appear in: Powder Technology

Received date: 2 September 2015 Revised date: 3 February 2016 Accepted date: 20 February 2016

Please cite this article as: Philipp Lau, Matthias Kind, CFD-PBE simulation to predict particle growth in a fluidized bed melt granulation batch process, *Powder Technology* (2016), doi: 10.1016/j.powtec.2016.02.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

CFD-PBE SIMULATION TO PREDICT PARTICLE GROWTH IN A FLUIDIZED BED MELT GRANULATION BATCH PROCESS

Philipp LAU¹ and Matthias KIND^{1*}

¹ Karlsruhe Institute of Technology, Department of Thermal Process Engineering, Kaiserstraße 12, 76131 Karlsruhe, GERMANY *Corresponding author, e-mail address: matthias.kind@kit.edu

Tel./Fax.: +49-721-608-42391/+49-721-608-43490

ABSTRACT

The fluidized bed spray granulation process unites the steps of solid formation and product formulation in one apparatus and is used to produce granulate products out of a liquid. According to different applications of granules, a specific product particle size distribution is required. Thus, the ability to predict the development of the particle size distribution is crucial for process design, optimization and scale-up. For this reason, population balance equations can be solved where the knowledge of particle size-dependent growth rates are the important quantities, which are difficult to obtain by experiments.

Using a computational fluid dynamics multiphase model with one nozzle at its center, an advanced two-fluid model with five fluid phases is solved for short process times (~ s) considering a high local and temporal resolution of the granulation process (including fluid dynamics, drop deposition and energy equations) to evaluate size-dependent growth rates, as a function of the current state of the process. By transferring particle growth rates to population balance equations, the development of particle size distribution can be finally predicted for long process times (~ min).

The present work applies the predictive model to an industrial melt spray granulation process in batch mode. Experimental data show that this model could be implemented successfully.

Keywords: computational fluid dynamics; population balance equations; fluidized bed spray granulation; industrial scale; particle size-dependent growth rate.

1

Download English Version:

https://daneshyari.com/en/article/4910856

Download Persian Version:

https://daneshyari.com/article/4910856

<u>Daneshyari.com</u>