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A new drag forcemodel was developed to simulate gas-solid particle two-phase flows. The drag forcemodel was
based on the centrifugal correction, which can be presented by the gradients of the mixture velocities. For gas-
solid particle two-phase flow, the effects of the centrifugal force on the solid particles were realized by the cor-
rection of the gradients of the mixture velocities. According to the corrections, the terminal velocities of the dis-
persed phase (solid particles) were able to be calculated in multi dimensions. Through the comparisons of
numerical simulations to the experiments and the other models on 2D and 3D cases, this model was validated.
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1. Introduction

Gas solid-particle two-phase flows can be encountered frequently in
many chemical, petrochemical and biochemical industries, such as ab-
sorption, oxidation, hydrogenation, coal combustion boilers, food and
commodity transfers, pharmaceutical granulators, the dryers and filters
in oil & gas and aerospace propulsion systems [1]. Due to the complex
flow phenomena of two-phase flows, a good understanding of the dy-
namics of solid particles inside the fluid flows will help the engineers
to design the high efficient facilities under optimized operating
parameters.

For studying the phenomena of gas solid-particle two-phase flows,
the experimental facilities and methods, such as laser-Doppler ane-
mometer (LDA), particle image analysis & velocimetry (PIV) measuring
technique and positron emission particle tracking (PEPT)method, were
used by Ruck and Makiola [2], Hernandez-Jimenez et al. [3] and
Laverman et al. [4] respectively to study and measure the distributions
of the transient velocity vectors of solid particles and the behaviors of
solid particles under the fluidized regime.

Although some of useful information can be obtained by experi-
ments at certain measurement points, it is difficult to have the details
of the whole flow fields. Normally the cost of doing experiments is too
high to measure the details of the flow fields. In the recent decades, a
computational technology, called as computational fluid dynamics
(CFD), was rapidly developed [1]. In CFD the approaches of Eulerian, La-
grangian and the couple Eulerian-Lagrangian were employed to

simulate the details of the fluid flows [5–7]. Through the former studies
using CFD simulations, it was found that the accuracy of the CFD simu-
lations depends on the employedmathematicalmodels [1,8–10]. A sim-
ple, efficient and accurate mathematical model can not only help CFD
simulations to obtain the agreeable simulation results but also help to
save the computing costs.

A newdrag forcemodelwas developed in this paper. Thismodelwas
based on the idea of Shang et al. [1,8–10]. It employed the gradient of
the mixture velocity to revise the gravity for considering the natural
curve movement of the droplets and particles. The effect of gravity
with centrifugal correction was successful to be used into the drag
force model. Based on this idea, in this paper, the revised gravity was
used to calculate the terminal velocity from modifying the drift flux
model and then the terminal velocity was used to calculate the drag
force for gas liquid-droplet two-phase flows. For gas solid-particle
two-phase flow, the revised gravity was directly used to calculate the
terminal velocity and then the terminal velocity was used to calculate
the drag force. Through comparisons to experiments and other model
simulations on 2D and 3D cases, this model was validated.

2. Mathematical model

In this paper, the drag force model was developed based on
Eulerian-Eulerian two-fluid model. Therefore the governing equations
of the two-fluid model with Eulerian-Eulerian approach were
employed. The time averaged conservation equations of mass, momen-
tum, the turbulent kinetic energy equation and the turbulent kinetic en-
ergy transport equation can be written as the following.

Powder Technology 303 (2016) 124–129

E-mail addresses: shangzhi@tsinghua.org.cn, zshang@tamu.edu.

http://dx.doi.org/10.1016/j.powtec.2016.09.043
0032-5910/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2016.09.043&domain=pdf
http://dx.doi.org/10.1016/j.powtec.2016.09.043
mailto:zshang@tamu.edu
http://dx.doi.org/10.1016/j.powtec.2016.09.043
http://www.sciencedirect.com/science/journal/00325910
www.elsevier.com/locate/powtec


Mass equation of continuous phase:

∂ αcρcð Þ=∂t þ ∇ � αcρcUcð Þ ¼ 0 ð1Þ

Mass equation of dispersed phase:

∂ αdρdð Þ=∂t þ ∇ � αdρdUdð Þ ¼ 0 ð2Þ

Momentum equation of continuous phase:

∂ αcρcUcð Þ=∂t þ ∇ � αcρcUcUcð Þ ¼ −αc∇pþ αcρcg þ ∇

� αc μc þ μ tcð Þ ∇Uc þ ∇UT
c

� �h i
þ Fcd ð3Þ

Momentum equation of dispersed phase:

∂ αdρdUdð Þ=∂t þ ∇ � αdρdUdUdð Þ ¼ −αd∇pþ αdρdg þ ∇

� αd μd þ μ tdð Þ ∇Ud þ ∇UT
d

� �h i
þ Fdc ð4Þ

Turbulent kinetic energy equation of continuous phase:

∂ αcρckcð Þ=∂t þ ∇ � αcρcUckcð Þ ¼ ∇ � αc μc þ
μ tc

σk

� �
∇kc

� �

þ αc Gc−ρcεcð Þ ð5Þ

Turbulent kinetic energy equation of dispersed phase:

∂ αdρdkdð Þ=∂t þ ∇ � αdρdUdkdð Þ ¼ ∇ � αd μd þ
μ td

σk

� �
∇kd

� �

þ αd Gd−ρdεdð Þ ð6Þ

Turbulent kinetic energy dissipation equation of continuous phase:

∂ αcρcεcð Þ=∂t þ ∇ � αcρcUcεcð Þ ¼ ∇ � αc μc þ
μ tc

σεc

� �
∇εc

� �

þ αcεc
kc

Cε1Gc−Cε2ρcεcð Þ ð7Þ

Turbulent kinetic energy dissipation equation of dispersed phase:

∂ αdρdεdð Þ=∂t þ ∇ � αdρdUdεdð Þ ¼ ∇ � αd μd þ
μtd

σεd

� �
∇εd

� �

þ αdεd
kd

Cε1Gd−Cε2ρdεdð Þ ð8Þ

in which

μ tc ¼ Cμρc
k2c
εc

ð9Þ

μ td ¼ Cμρd
k2d
εd

ð10Þ

Fcd ¼ −Fdc ð11Þ

Gc ¼ 1
2
μtc ∇Uc þ ∇UT

c

� �
: ∇Uc ð12Þ

Gd ¼ 1
2
μ td ∇Ud þ ∇UT

d

� �
: ∇Ud ð13Þ

where, ρ is the density, U are the velocity vectors, α is the volumetric
fraction, p is pressure, g is the gravitational acceleration vector, F is
the interfacial force, μ is viscosity, μt is turbulent viscosity,G is stress pro-
duction. Cμ, σk, σεc, σεd, Cε1, Cε2 are constants for k-ε turbulence model
[11], shown in Table 1. The subscript c stands for the continuous
phase and d stands for the dispersed phase.

The interfacial forces Fcd and Fdc can be formulated through the in-
teractions between continuous phase and dispersed phase. They have
the same formulas but the sign is opposite. The total interfacial force
Fcd can be described as the following equation.

Fcd ¼ Fdrag
cd þ Fvirtual

cd þ F lift
cd þ Fdispersion

cd þ⋯ ð14Þ

where subscript cd indicates the interfacial force acting on continuous
phase from dispersed phase, Fdrag is interfacial force due to drag by
the continuous liquid, Fvirtual is the interfacial force due to virtual mass
effect, Flift is the interfacial force due to slip shear lift, Fdispersion is the in-
terfacial turbulent dispersion force due to the movement of the turbu-
lent eddies, and so on the other interfacial forces can be added into
Eq. (14).

In this paper, only the interfacial forces of drag force, lift force and
turbulent dispersion force were considered. The expanded description
about these forces can be represented as the following equations [12].

Fdrag
cd ¼ 3αdρcCd Uc−Udj j

4dp
Uc−Udð Þ ð15Þ

F lift
cd ¼ αdρcCl Uc−Udð Þ � ∇� Uc ð16Þ

Fdispersion
cd ¼ Ctd

3αdρcCd Uc−Udj j
4dp

ηtc
σ tc

∇αc

αc
−

∇αd

αd

� �
ð17Þ

in Eqs. (15), (16) and (17), dp is dispersed phase diameter, σtc is the
Prandtl/Schmidt number set to be 0.75 and ηtc is the turbulent diffusiv-
ity which can be simplified as ηtc=μtc/ρc. Cd is drag force coefficient
which should be modeled, Cl is lift force coefficient which is default as
0.5 and Ctd is the turbulent dispersion force coefficient which is 1.0.
These coefficients can be determined by mathematical models or
constants.

3. Drag force coefficient

Based on the semi-empirical development, Krishna et al. [13]
employed the drag force coefficient from the concept of terminal veloc-
ity, shown in Eq. (18).

Cd ¼ 4
3
ρd−ρc

ρc
gdp

1

Utj j2
ð18Þ

where Ut is the terminal velocity of droplets or particles. This drag force
coefficient model was employed in this paper. However how to calcu-
late the terminal velocity is the innovation in this paper. According to
thedifferent characteristics of droplets or particles, the terminal velocity
will be calculated by different models.

The terminal velocity of solid particles can be modeled through the
particle relaxation time [9,10,14]. In gas-solid particle flow system, the
continuous phase is gas, subscripted as g and the dispersed phase is
solid particle, subscripted as p.

Ut ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρp−ρg

� �
μgRepτp g0j j

ρpρgdp

vuut g0

g0j j ð19Þ

Table 1
Constants of standard k-ε turbulence model.

Variable Cμ σk σε C1 C2

Constant 0.09 1.0 1.3 1.44 1.92
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