

Available online at www.sciencedirect.com

ScienceDirect

Procedia Chemistry 21 (2016) 306 - 313

5th International ATALANTE Conference on Nuclear Chemistry for Sustainable Fuel Cycles

Uranium dissolution in hyperalkaline TMA-OH solutions: Preliminary results

Christelle Cachoir^{a*}, Sonia Salah^a, Thierry Mennecart^a, Karel Lemmens^a

^aBelgian Research Nuclear Centre (SCK-CEN), Boeretang 200, 2400 Mol, Belgium

Abstract

Leaching experiments were performed with depleted UO₂ powders in tetramethylammonium solutions (TMA-OH) at pH 13.5 and 12.5, and at different UO₂ surface area to volume of solution (SA/V) ratio's to determine the solubility and the dissolution kinetics of UO₂ at high pH in absence of cations dominating cementitious waters (Ca,Na, K).

The solubility of UO₂ increased from pH 12.5 to 13.5 and by increasing the SA/V ratio up to 100 m⁻¹. However, no known U secondary-phases were predicted by geochemical calculations to control the measured U-concentrations. A two-step dissolution process was put forward: 1-a fast initial rate, surface controlled and hydroxo promoted and 2- a sorption process at low SA/V ratio or a continuous residual dissolution process at high SA/V ratio.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of ATALANTE 2016

Keywords: uranium dioxide, dissolution, alkaline pH, TMA-OH

1. Introduction

The Supercontainer design is the current reference design for the geological disposal of spent nuclear fuel in Belgium¹. The main characteristic of this design is to provide a multi-barrier system to contain and isolate the radioactive waste from the biosphere. The immobilized waste is inserted into a canister, which is surrounded by different engineered barriers, like the overpack (carbon steel), the buffer (= Ordinary Portland Cement based concrete) and the stainless steel envelope. The concrete buffer is expected to impose a high pH environment on the long-term. In 2005, a research programme was started at the Belgian Nuclear Research Centre (SCK•CEN) to

^{*} corresponding author. Tel.: +3214333129. *E-mail address*: ccachoir@sckcen.be

evaluate the stability of UO_2 , as analogue of real spent fuel in such environment. In a previous work², it was demonstrated that the high pH did not increase the soluble U(IV) concentrations in synthetic cementitious pore waters, but it increased the soluble U(VI) concentrations due to formation of uranyl-hydroxo complexes. Besides this, it was stressed that presence of alkali and/or alkaline-earth elements, especially calcium may strongly favour the U(VI)-complexation and/or U-colloid formation, which may result in the precipitation of Ca- U(VI) phases such as $CaUO_4$ or $CaU_2O_7 \times 3H_2O$.

In order to better understand the processes taking place in cementitious systems, this paper presents a new set of experiments performed in hydroxide solutions (TMA-OH) in order to avoid colloid formation on the one hand and to minimize the interaction of uranium with alkali and/or alkaline-earth elements present in cementitious waters (i.e. Na, Ca and K) on the other hand.

2. Experimental details

All leaching experiments were performed in a glove box at $25 - 30^{\circ}$ C in PTFE containers under Ar atmosphere with pO₂ below 2 ppm and pCO₂ below 0.1 ppm.

Depleted UO_2 pellets were cut into slices of 3 mm thickness or crushed, sieved and washed in MilliQ water to recover the fraction of 50-100 μ m without fines. An average grain size of $88 \pm 32.7 \mu$ m was estimated by SEM observations (JEOL 6310). However, a reliable BET measurement was not possible because the specific surface area of the powder was close to the detection limit of the apparatus (Micrometrics-Tristar II 3020 with N_2 gas). Therefore, a mathematical relationship between the BET specific surface area of UO_2 and the UO_2 powder size was established based on a literature survey³. Thereupon, a specific surface area of $3.2 \times 10^{-2} \, \text{m}^2 \, \text{g}^{-1}$ was estimated for the depleted UO_2 powder (50-100 μ m). Based on the dimensions of the sliced pellet (\emptyset = 8 mm and h= 3 mm), the geometric surface area of one single depleted UO_2 pellet was calculated to correspond to $1.76 \times 10^{-4} \, \text{m}^2$; no surface roughness correction was considered. The total surface area of the samples is given in Table 1.

Two TMA-OH solutions (TMA-OH pentahydrate \geq 97%- T7505 Sigma-Aldrich) were prepared with a hydroxyl concentration [OH] representative for the two most important pH domains of the water percolating through the cement/concrete buffer⁴ i.e. pH 13.5 and 12.5. An ultrapure MilliQ water, previously degassed by bubbling Argon gas to remove O₂ and CO₂ from the solution, was used to make the TMA-OH solutions. The pH of the (leached) solution were determined with a liquid-filled combination electrode for high pH media (Inlab type -Mettler Toledo), freshly calibrated against dilute standard pH buffers (pH 7, 10 and 13). Redox potentials of all (leached) solutions were measured with a Pt combined electrode with Ag/AgCl reference system (Metrohm). A short equilibration time, less than 5 min, was applied for both pH and Eh measurements.

Table 1 summarizes the six static experiments carried out with depleted UO_2 , at three different ratio's of fuel surface area to leachant volume (SA/V of 7, 100 and 257 m⁻¹). In order to reach these SA/V ratio's, a definite amount of depleted UO_2 powder (granulometry of 50-100 μ m) and one depleted UO_2 pellet were mixed in 300 mL of TMA-OH solution (Table 1- Exp. 1, 2, 3 at pH 12.5 and Exp. 4, 5, 6 at pH 13.5).

Experiment	Target pH	UO₂ depleted	SA powder	SA pellet	Total	Volume	SA/V
		Mass (g)			Surface Area		
			$(\times 10^{-2}m^2)$	$(\times 10^{-4}m^2)$	$(\times 10^{-2}m^2)$	(mL)	(m^{-1})
1	12.5	0.06 g powder + 1 pellet	0.2	1.8	0.2	300	7
2	12.5	1 g powder + 1 pellet	3.2	1.8	3.2	300	100
3	12.5	2.4 g powder + 1 pellet	7.7	1.8	7.7	300	257
4	13.5	0.06 g powder + 1 pellet	0.2	1.8	0.2	300	7
5	13.5	1 g powder + 1 pellet	3.2	1.8	3.2	300	100
6	13.5	2.4 g powder + 1 pellet	7.7	1.8	7.7	300	257

Table 1. Overview of the six static tests with depleted UO₂ in TMA-OH solutions

Download English Version:

https://daneshyari.com/en/article/4910944

Download Persian Version:

https://daneshyari.com/article/4910944

<u>Daneshyari.com</u>