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A B S T R A C T

Stream flow prediction is studied by Artificial Intelligence (AI) in this paper using Artificial Neural Network
(ANN) as a hybrid of Multi-Layer Perceptron (MLP) with the Levenberg–Marquardt (LM) backpropagation
learning algorithm (MLP-LM) and (ii) MLP integrated with the Fire-Fly Algorithm (MLP-FFA). Monthly stream
flow records used in this prediction problem comprise two stations at Bear River, the U.S.A., for the period of
1961–2012. Six different model structures are investigated for both MLP-LM and MLP-FFA models and their
results were analysed using a number of performance measures including Correlation Coefficients (CC) and the
Taylor diagram. The results indicate a significant improvement is likely in predicting downstream flows by MLP-
FFA over that by MLP-LM, attributed to identifying the global minimum. In addition, an emerging multiple
model (ensemble) strategy is employed to treat the outputs of the two MLP-LM and MLP-FFA models as inputs to
an ANN model. The results show yet another further possible improvement. These two avenues for improve-
ments identify possible directions towards next generation research activities.

1. Introduction

Stream flow prediction based on deriving correlations between
modelled results and recorded time-series is often one of testing
grounds for newly emerging data-driven techniques. This is evidenced
indirectly by Sivakumar and Berndtsson [44] presenting the outcome of
an internet search on the number of hydrological publications using
Artificial Neural Networks ANN) during 1990–2010. This paper is fo-
cussed on investigating the integration of the Fire-Fly Algorithms FFA)
developed by Yang [50] with the well-established feedforward Multi-
Layer Perceptrons (MLP). Whilst ANN is quite well established in
stream flow forecasting, MLP-FFA is yet to be applied.

The capability for predicting flows has undergone a radical devel-
opment over the years since 1960, of which one class of techniques use
a type of transfer function by seeking correlation and autocorrelation
between flow values at one or more sections of the same river. Whilst
prediction techniques based on distributed models are precluded in this

paper (from hydrological routing to those based on the Saint-Venant
equations), bottom-up data-driven (or data mining) techniques have
emerged over the years since the 1960s. Up to 1990, the focus was on
such modelling strategies as: traditional transfer functions regression
analysis or statistical methods such as ARIMA models of Auto-
Regressive Integrated Moving Averages, see Box and Jenkins [3] and
Makridakis and Hibon [29].

Data-driven modelling techniques have undergone a radical shift since
the late 1980s as further techniques emerged based on Artificial
Intelligence (AI). These include: ANN models, see Thirumalaiah [47],
Eğrioğlu et al. [7], Rojas [38] ASCE TF [1]; Genetic Programming, see
Koza [27], Savic [42] and Kostić et al. [25]; Genetic Expression Pro-
gramming (GEP), see Ferreira [11], Khatibi et al. [20]; and fuzzy logic, see
Kothari et al. [26]; as well as machine learning techniques such as SVM,
see Vapnik [48] and Ghorbani [13]. Applications of these techniques for
single or more stations to predict hourly, daily or monthly stream flows
have been investigated and successful results have been reported.

http://dx.doi.org/10.1016/j.aei.2017.10.002
Received 25 March 2017; Received in revised form 29 August 2017; Accepted 3 October 2017

⁎ Corresponding author.
E-mail addresses: gtev.rex@gmail.com (R. Khatibi), ghorbani@tabrizu.ac.ir (M.A. Ghorbani), F.Akhonipor93@ms.tabrizu.ac.ir (F.A. Pourhosseini).

Abbreviations: AI, Artificial Intelligence; ANN, Artificial Neural Networks; D, downstream station; FFA, Fire-Fly Algorithm; GA, Genetic Algorithm; GEP, gene expression programming;
LM, Levenberg-Marquardt algorithm; MLP, Multi-Layer Perceptron; MLP-FFA, MLP synthesised with FFA; MLP-LM, MLP synthesised with the LM algorithm; MM, Multiple Models; MM-
ANN, Multiple Models, in which lower order models are driven by ANN; MM-SA, Multiple Models, in which lower order models are driven by Simple Average; MM-SVM, Multiple Models,
in which lower order models are driven by SVM; R2, Correlation Coefficient; RMSE, Root Mean Square Error; SA, Simple Averaging; SD, Standard Deviation; MAE, Mean Absolute Error;
SVM, Support Vector Machine; U, upstream station; XOR, exclusive OR gate

Advanced Engineering Informatics 34 (2017) 80–89

1474-0346/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
http://dx.doi.org/10.1016/j.aei.2017.10.002
http://dx.doi.org/10.1016/j.aei.2017.10.002
mailto:gtev.rex@gmail.com
mailto:ghorbani@tabrizu.ac.ir
mailto:F.Akhonipor93@ms.tabrizu.ac.ir
http://dx.doi.org/10.1016/j.aei.2017.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2017.10.002&domain=pdf


Although first artificial neuron models go back to McCulloch and
Pitts [30] as inspiration to emulate natural neural activities, develop-
ments of ANN-based working tools for research and practice emerged in
the 1990 s after the following basic developments: (i) the concept of
MLP emerged earlier in the 1940s and rooted in single neuron per-
ceptrons; (ii) despite the incorporation of various Boolean logic gates to
perceptrons, a certain logic gate (XOR) remained elusive but its in-
corporation led to the development of MLPs; (iii) MLPs driven by XOR
gates opened up the door for the rediscovery of the backpropagation
algorithms by Rumelhart et al. [40]; and (iv) in time, best practice
procedures emerged as ANNs were transformed into tools from the
1990s onward. The mathematical basis of ANN models is described by
the universal approximation theorem, according to which a single
hidden layer with a finite number of neurons approximates to con-
tinuous functions, see Cybenko [6] and Hornik [17]. Hence, ANN
capabilities are not confined to a particular problem but cope with di-
verse applications. These applications are wide and since the 1990s
they include stream flows, and in this paper, it serves as the baseline for
comparative studies.

ANN models are embedded with parameters that their values need
to be identified using optimisation techniques. Classical optimisation
capabilities cover the strategies from traditional search algorithm to
gradient techniques. These were enriched by new technique by emu-
lating deeper concepts of evolutionary processes. These nature-inspired
algorithms include Genetic Algorithm (GA), which serves as an opti-
misation algorithm, see Goldberg [14]; as well as a host of prediction
tools, such as ANN, GP and fuzzy logic. However, as remarked by Flood
[12] that progress in ANN applications then had largely stagnated. One
avenue for innovation since then has been the emergence of a new
generation of nature-inspired optimisation algorithms are being de-
veloped in recent years, which emulate the working of species, where
the first generation techniques emulate deep concepts of evolutionary
processes. New algorithms include Whale Optimisation Algorithm,
Moth-Flame Optimisation algorithm, Grey Wolf Optimiser; Firefly Al-
gorithm (FFA). None of these techniques are expression of the best but
an identification of a diversity of working orders and possibilities. This
paper uses FFA to build on MLP to serve as a strategy for back-
propagation problems. FFA is a swarm intelligence optimisation tech-
nique based on the movement of fireflies [50] and its applications are
widening, see Ghorbani et al. [15,16] and Raheli et al. [37].

It is customary to investigate several models and select the best
performing model but reject the others. Contrary to this wide practice,
there are some arguments in favour of pluralism in modelling and the
need to understand the individual models before rejecting them; see
Khatibi et al. [20], Khatibi et al. [21], Khatibi et al. [24], Ghorbani et al.
[13]. The question is then how can the synergy among multiple models
be used? One way forward is to treat the available multiple or ensemble
modelling results together to produce more representative synthetic
results. A simple way is to take their simple Ensemble Averages. The
idea has a long history, see Clemen [5] for a review. Simple averaging is
tantamount to applying constant and equal weights to the contribution
of individual models but AI techniques have been applied to multiple
models by combining them through using GA to assign linearly varying
weights, e.g. see Kadkhodaie-Ilkhchi et al [18]. The linearity limitation
has been removed by using ANN or SVM models, as introduced by
Nadiri et al. [32], Tayfur et al. [45], Nadiri et al. [33] and Nadiri et al.
[34]. The paper explores the use of multiple models to identify a second
direction for possible innovations in data-driven modelling practices.

Although FFA has been used successfully in different fields, to the
best knowledge of the authors, MLP-FFA is yet to be applied to stream
flow problems. This paper investigates the suitability of the hybrid
MLP-FFA approach to predicting stream flows; compares its perfor-
mance with its corresponding ANN model for predicting stream flows at
Bear River, USA; discusses the possibility of multiple models, such as
using simple average of MLP-LM and MLP-FFA, as an application of
multiple models approach; and discusses possible trends for next

generation modelling research and practices.

2. Methodology

The paper investigates predicting flows at a downstream station in
terms of recorded flow values at the same station and/or an upstream
station with various time lags using the following methodologies.

2.1. Artificial Neural Networks (ANN)

The emergence of proof-of-concept for ANNs in 1985 was the out-
come of the integration of MLP with backpropagation algorithms.
Perceptrons developed in 1957 as an electronic device by Frank
Rosenblatt (1928–71), see Rosenblatt [39], was designed to emulate
biological processes and to be capable of learning, although using initial
single artificial neurons (no hidden layers) was seen unlikely to deliver
the capability for learning complex operations. After a series of in-
ventions and reinventions, e.g. XOR logic gates, a deeper insights
emerged with MLPs driven by their hidden layers and thereby this led
to the integration of MLPs with backpropagation algorithms, often
based on least squares techniques.

Since 1985, ANNs have been transformed into flexible working
tools, which serve as a modelling strategy to identify possible correla-
tions within a dataset and incorporate an optimisation strategy. Their
applications to forecasting flow/stage values within open channels have
been an active area of research in the past two or three decades. Typical
neural networks consist of three layers of neurons: (i) the input layer,
(ii) the hidden layer, and (iii) the output layer; commonly known as
feedforward Multi-Layer Perceptron (MLPs). The topology of typical
neurons of an ANN is shown in Fig. 1.

This study uses the MATLAB platform and, as shown in Fig. 1,
weights are attached between neurons of the input layer connected to
those of the hidden layer and from neurons of the output layer to those
of the hidden layer through appropriate activation functions. A sum-
ming junction adds weighted input signals through activation functions
and that between the input layer and the hidden layer is the sigmoid
activation function to limit the amplitude of the input data to the range
of {0.0–1.0} and that between the hidden layer and the output layer is
Purelin. These are expressed mathematically as follows:
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where Q is the array of input parameters in terms of flows at the
Downstream (D) and/or Upstream (U) observation stations; f1 and f2 are
actuation functions, bj and bk are bias values corresponding to f1 and f2
and W is weight with suffices if i, j and k determining their corre-
spondence to f1 and f2; in this study i takes values from 1 to 5, j takes
values from 1 to 20 and k is set to 1.

The backpropagation algorithm refers to the computational phase
for identifying the values of the weights. It was discovered and redis-
covered, until in 1985 before its integration with MLP. The weights can
be identified by minimising an error function, e.g. the Least Square
Method but the identification of the minimum is an optimisation pro-
blem and often solved by the steepest gradient technique. In this study,
the backpropagation phase employs the widely used Levenberg-
Marquardt (LM) algorithm, which interpolates between
the Gauss–Newton algorithm and the gradient descent method, for a
further detail, see [41].
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