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a b s t r a c t

Developing optimal operation policy for single or multi-purposes dams and reservoirs is a complex engi-
neering application. The main reasons for such complexity are the stochastic nature of the system input
and slow convergence of the optimization method. Furthermore, searching optimal operation for multi-
purposes or chain reservoir systems, becomes even more complex because of interfering operations
between successive dams. In this study, a new hybrid algorithm has been introduced by merging the
genetic algorithm (GA) with the krill algorithm. In fact, the proposed hybrid algorithm amalgamates
the advantages of both algorithms, first, the ability to converge fast for global optimum and, second, con-
sidering the effect of stochastic nature of the system. Three benchmark functions were used to evaluate
the performance of this proposed optimization model. In addition, the proposed hybrid algorithm was
examined for Karun-4 reservoir in Iran as an example for a hydro-power generation dam. Two benchmark
problems of hydropower operations for multi-purposes reservoir systems, namely four-reservoir and ten-
reservoir systems were considered in the study. Results showed that the proposed hybrid algorithm out-
performed the well-developed traditional nonlinear programming solvers, such as Lingo 8 software.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Several dams and reservoirs have been constructed around the
world for better operation of available water for irrigation, domes-
tic and industrial uses, hydropower generation and flood mitiga-
tion. Dams and reservoirs are the hydraulic structures designed
for storing and regularly releasing water to meet the downstream
water needs based on the operator’s decisions [1,2,20]. Despite the
need for dams and reservoirs to match the increasing of the water
demands, their operation is a highly challenging task to achieve. In
fact, optimizing the operation of the existing dams and reservoirs is
essential to maximize their benefit and to cope with present and
future water demands [1]. In most cases, the decision-makers for
dams and reservoirs depend on their experience to decide the
appropriate timing and amount of water release. The main
challenge related to dam and reservoir operations is that the
release decisions should be made in light of the system’s physical

constraints, including the stochastic nature of system parameters
[3,21].

Over the last few decades, water resources managers have given
serious attention to optimizing the operation policies of dams and
reservoirs. Several optimization methods of this complex engineer-
ing application have been introduced due to improvements in ana-
lytical and computer technology [4]. Recently, evolutionary
algorithms and other metaheuristics have been employed to
achieve optimal operation and sustainable water resources man-
agement solutions for dam and reservoir operation [5]. In fact, evo-
lutionary algorithms are iterative search strategies enclosing the
following phases: consideration and explanation of decision vari-
ables and constraints; selection of the decision variables and corre-
sponding values; computation of objectives and constraints for the
selected decision variable values [6]. Furthermore, a simulation
process is repeated and the set of decision values is updated until
the values satisfy the selected stopping criteria; and the optimal
solutions are obtained by a decision-making process [6].

Various metaheuristic methods have also been used to solve the
optimization problems. Oliveira and Loucks [7] used a genetic
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algorithm (GA) to develop optimal water release policies for the
complex dam and reservoir systems. Furthermore, the honey-bee
mating algorithm (HBMA) and bat algorithm (BA) have been inves-
tigated as alternative methods for searching optimal water release
decisions [8,9]. A further step towards long-term optimization has
been taken in the multi-tier interactive GA [10]. GA has been mod-
ified by integrating it with a stepwise simulation model to solve
large-scale dam and reservoir systems that include up to 16 dams
[11]. Bozorg Haddad et al. [12] used water cycle algorithm to deter-
mine reservoir policies for the optimal operation of Karun-4 reser-
voir in Iran. They also compared the results of the water cycle
algorithm with those obtained with GA and nonlinear program-
ming method.

2. Problem statement and objectives

The above-mentioned optimization algorithms have several
advantages and disadvantages. The major advantage in these algo-
rithms is their ability to be adjusted to include several nonlinear
systems in parallel or series with different constraints and objec-
tive functions. The major disadvantage is the difficulty of address-
ing the stochastic pattern of the system parameters, slow
convergence and lack of ability to distinguish the optimal global
solutions. In this context, this study introduces an improved krill
algorithm in combination with GA to address the stochasticity pat-
tern and improve the ability of the search procedure to return glo-
bal optima with relatively faster convergence. The krill algorithm
was first introduced in 2012 by Gandomi and Alavi [13]. It is a
novel biological-based algorithm that considers time-
independent parameters while searching for the optimal solution.
In the krill algorithm, time interval can be fine-tuned to reflect the
stochastic behavior of the system parameters, which is a unique
advantage over other algorithms [14]. However, the krill algorithm
is slow to converge, especially when applied to a complex stochas-
tic system such as dam and reservoir system.

In this study, a proposal for improvement of krill algorithm has
been made. It is necessary to integrate differential evaluation for
the global numerical optimization to accelerate the convergence
procedure. The proposed hybrid algorithm in the present research
is different from standard krill algorithm in a few aspects. The
major function of GA is to assure the uniformity of krill population
by finding a starting candidate solution without prior knowledge of
the solution. Such integration for both algorithms guarantees fast
convergence and avoids trapping in local optima.

In this study, the proposed hybrid algorithm was introduced to
investigate its ability to optimize single and multi-purposes dams
and reservoirs operation. The efficiency and reliability of the pro-
posed hybrid algorithm were first verified using three mathemati-
cal benchmark functions. Then, its performance was evaluated by
using real case studies of dam and reservoir applications. These
case studies are well-known which were selected primarily by
other researchers to introduce a comparative analysis on the per-
formance of the proposed hybrid algorithm and previously-
developed optimization models.

3. Materials and methods

3.1. Krill algorithm

The krill algorithm is based on krill’s food search behavior. The
shortest distance of each krill from both the food and the center of
krill community is taken as the target function for krill’s
movement.

In the krill optimization algorithm, krill movement is catego-
rized by three factors:

1. The motion created by other organisms,
2. Food-finding behavior, and
3. Random distribution.

Krill swarm is aiming at increasing density and finding more
food. Krill attraction to high-density locations is considered as
the target function. In natural systems, the fitness of every creature
is a combination of distance from food and the concentration in the
krill swarm. In multidimensional spaces, the algorithm should be
able to search multiple dimensions. Therefore, the following
Lagrangian model is used for decision making in multidimensional
space:

dXi

dt
¼ Ni þ Fi þ Di ð1Þ

where Ni is the motion made by other creatures, Fi is the food-
finding movement, and Di is the physical distribution. Krill move-
ments are explained as follows:
� Movements of other creatures: According to theory, krill tries to
move towards the density center. The ai movement direction is
approximated through the local density swarm, the swarm
movement destination, and the factors avoided by the swarm.
This movement is shown as: xn

Nnew
i ¼ Nmaxai þxnN

old
i ð2Þ

ai ¼ alocal
i þ at arg et

i ð3Þ
where Nmax is maximum speed, and is usually taken 0.01 m/s, xn is

the inertia weight, in the range of zero and one, Nold
i is the last

movement, at arg et
i is the target direction effect, which is showcased

by the best krill. Neighborhood effects are the ratio of how much
creatures are attracted to or repelled by certain areas for the local
search. Neighbors’ effects can be modeled as:

alocal
i ¼

XNN
i¼1

bK ij
bXij ð4Þ

bXij ¼ Xj � Xi

kXj � Xik þ e ð5Þ

bK ij ¼ Kj � Ki

kworst � kbest
ð6Þ

where kbest and kworst are the best and worst values for krill fitness
and Ki represents the fitness value of the current target function,
Kj is the current neighbor’s fitness value, X represents the corre-
sponding position of the fitness value, and NN is the number of
neighbors. There are several strategies for neighbor selection, one
of which is related to the feel distance. Feel distance can be deter-
mined by the following equation:

ds;i ¼ 1
5N

XN
j¼1
kXi � Xjk ð7Þ

where ds;i is the feel distance for getting the ith krill and N is the krill
population. Fig. 1 shows this distance. The five factors in the
denominator are derived empirically. According to the above rela-
tion, if the distance between two krills is less than the one as
yielded by Eq. (7), these two krills are neighbors. The following rela-
tion indicates the effect of the best-fitting function:

at arg et
i ¼ Cbest bK i;best; bXi;best ð8Þ

where Cbest is the most fitting krill impact index. This index is
defined on the basis that the solution converges to the global opti-

mum. Cbest is calculated as follows:

288 M. Ehteram et al. / Advanced Engineering Informatics 32 (2017) 287–298



Download English Version:

https://daneshyari.com/en/article/4911051

Download Persian Version:

https://daneshyari.com/article/4911051

Daneshyari.com

https://daneshyari.com/en/article/4911051
https://daneshyari.com/article/4911051
https://daneshyari.com

