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h i g h l i g h t s

� A generic mathematical model is developed for multi-period CCS retrofit planning.
� The model minimises the cost of retrofitting power plants to meet the emission limit.
� The model is applied to case studies of Malaysia and Taiwan.
� The linearity of the model guarantees global optimality for the solutions obtained.
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a b s t r a c t

Carbon capture and storage (CCS) is a low-carbon technology aiming to prevent carbon dioxide (CO2)
generated in large industrial facilities (e.g. power plants) from entering the atmosphere, thus mitigating
human-caused climate change. CCS is deemed to be one of the most promising approaches to reduce
industrial CO2 emissions on a global scale, in addition to energy efficiency enhancement and increased
use of renewables. This paper presents a mathematical programming model for multi-period planning
of power plant retrofits with carbon capture (CC) technologies. The model allows for energy penalties
due to CC retrofits and the need for compensatory power generation, as well as variations in technological
parameters (such as electricity costs) over time. Furthermore, the model is formulated as a mixed integer
linear programme (MILP), for which global optimality is guaranteed if a solution exists. Two case studies
on carbon-constrained energy sector planning are presented to illustrate the proposed approach. Further
analysis is carried out to examine the effect of the cost limit on the total increase in power generation
cost.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The exploitation of fossil fuels such as coal and oil has caused
serious environmental pollution and the build-up of atmospheric
carbon dioxide (CO2) since the Industrial Revolution, with the lat-
ter fact being the most important long-lived ‘‘forcing” of climate
change [1]. With global concern about resource depletion, environ-
mental emissions and climate change, which are among the key
drivers of sustainability, it has become pressing for countries
around the world to commit to reducing greenhouse gas (GHG)
emissions and mitigating global warming, particularly after
COP21. Carbon capture and storage (CCS) is considered critical in
a portfolio of low-carbon technologies for combating climate
change [2], in addition to renewables and end-use energy effi-
ciency. According to Energy Technology Perspectives 2016 [3],

CCS would contribute 12% of the cumulative emissions reductions
in the 2 �C Scenario (2DS) over the period 2013–2050, against a
business-as-usual scenario. Furthermore, CCS is shown to be an
integral part of any lowest-cost mitigation scenario with the
increase in long-term global average temperature significantly less
than 4 �C (e.g. 2DS) [4].

CCS involves capturing CO2 from the use of fossil fuels in elec-
tricity generation and industrial processes. Carbon capture (CC)
technologies include pre-combustion capture (in integrated gasifi-
cation combined cycle (IGCC) plants) [5,6], post-combustion cap-
ture (using flue gas scrubbing) [7,8], oxy-fuel combustion [9] and
chemical looping combustion (CLC) [10,11]. For any of these tech-
niques, the captured and compressed CO2 is then transported
(commonly by pipeline) and injected into a sink (typically a geo-
logical reservoir) for permanent storage. Possible sinks include
deep saline aquifers, inaccessible coal seams and depleted oil/gas
reservoirs [12,13]. CC may also be carried out in conjunction with
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enhanced oil recovery (EOR) [14] or enhanced coal bed methane
(ECBM) recovery [15], to enable both CO2 utilisation and storage.
CCS is thus able to mitigate climate impacts by preventing large
amounts of CO2 from being released into the atmosphere.

As a transitional technology to a sustainable low-carbon econ-
omy, CCS allows the continued use of fossil fuels under carbon
emission constraints. This aspect is critical given the world’s con-
tinued dependence on fossil energy [16], which is still relatively
reliable and cheap compared with most forms of renewable
energy. Moreover, fossil energy appears to be more socially accept-
able than nuclear energy [17] – the only other major low-carbon
option currently available. Fossil fuel power plants account for a
significant share of the world’s CO2 emissions, and are thus a prime
candidate for CCS. Retrofitting power plants for CC, however,
entails major capital costs as well as reductions in both thermal
efficiency and power output [18,19]. These penalties ultimately
result in an increase in the cost of electricity generation, relative
to comparable unmodified power plants. Therefore, the deploy-
ment of CCS requires systematic sectoral planning so as to avoid
power shortages (due to energy losses from CC) and minimise
the increase in power generation cost.

For energy sector planning with CO2 emission constraints (for
climate change considerations), carbon-constrained energy plan-
ning (CCEP) has emerged as a relatively new area of research to
address emission reduction issues in a systematic manner [20].
Several techniques were developed under the framework of carbon
emission pinch analysis (CEPA). Tan and Foo [20] first presented a
graphical procedure using energy planning composite curves to
determine the optimal energy allocation to meet the energy
demands and emission limits, whilst minimising the use of zero-
carbon energy sources. The concept of CEPA was later extended
for cases with land availability [21] and water footprint constraints
[22], using algebraic and graphical tools respectively, as well as
segregated targeting for multiple sectors/zones using pinch-
based optimisation [23] and insight-based approaches [24]. For
energy planning problems with multi-footprint constraints, a
superstructure-based mathematical model was developed by
Pękala et al. [25]. In addition, there have been several applications

of CEPA in energy planning for Ireland [26,27], New Zealand [28–
30], California [31] and China [32].

CCEP was then extended for planning CCS deployment in the
power generation sector, focusing on the implications of retrofit-
ting power plants for CC. Various pinch-based [33–35] and mathe-
matical programming techniques [25,36,37] have been used to
account for the interplay between CO2 emission reductions and
power losses. The latter necessitate compensatory power to be
generated from new power plants or imported from adjoining
regions. Planning of power generation systems taking into account
multiple low-carbon options (including CCS) has also been demon-
strated [38–40]. These methods can, on a static (single-period)
basis, determine the minimum extent of CC retrofitting in a fleet
of power plants (hence minimised power losses and compensatory
power generation) to meet the emission limit.

To take account of energy demand growth and variations in key
parameters (e.g. emission limits, electricity costs, etc.) over time,
multi-period planning has been proposed. Chen et al. [41] devel-
oped a deterministic linear programming (LP) model named
PPOM-CHINA with consideration of negative externalities apart
from carbon emissions. Their model was applied to a case study
of China’s power planning over the period 2015–2030.
Betancourt-Torcat and Almansoori [42] developed a multi-period
stochastic programming model for the optimal design of electric
power systems. Their model considers different supply options
for natural gas and electricity imports as well as uncertainty in
the gas price, but is restricted to planning the United Arab Emi-
rates’ power infrastructure.

Instead of determining the optimal installed capacity and
power generation mixes over the planning horizon, Ooi et al. [43]
extended the previous single-period techniques [33,34] to address
the multi-period problem of planning CC retrofits in the power
generation sector based on projected energy mix data. However,
their automated targeting approach does not seem very
straightforward in handling CCEP problems, and is subject to the
inconvenience of having to calculate the carbon intensity
levels beforehand. On the other hand, both the energy and CO2

cascades [34,43] assume a ‘‘carbon” driving force, which does not

Nomenclature

Indices and setsi 2 I
power sources

i 2 IF fossil-based power sources
i 2 INF non-fossil power sources
k 2 K CC technologies
t 2 T time periods

Parameters
CCP carbon emission factor of compensatory power genera-

tion (kgCO2/kW h)
Ci carbon emission factor of power source i (kgCO2/kW h)
D discount rate (%)
Elimt emission limit in time period t (Mt/y)
Likt power loss factor associated with CC technology k for

power source i in time period t
Pit power output from source i in time period t (TW h/y)
RRikt carbon removal ratio of CC technology k for power

source i in time period t
amax
i maximum extent of CC retrofitting for power source i
amin
i minimum extent of CC retrofitting for power source i

bikt relative cost of electricity from the retrofitted capacity
of power source i using CC technology k in time period t

bREt relative cost of electricity from renewables in time per-
iod t

Dt length of time period t (y)
e limit for the increase in overall electricity cost from the

baseline (%)
C large positive number

Variables
eRit emissions from the retrofitted capacity of power source

i in time period t (Mt/y)
eUit emissions from the unmodified capacity of power

source i in time period t (Mt/y)
plossit power loss from source i in time period t (TW h/y)
yit binary indicating if power source i is retrofitted in time

period t
zik binary indicating the decision to use CC technology k for

power source i
ait fraction of the retrofitted capacity of power source i in

time period t
cit relative cost of electricity from the retrofitted capacity

of power source i in time period t
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