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h i g h l i g h t s

� Convolutional neural network is designed for probabilistic wind power forecasting.
� Ensemble technique is used to cancel out the diverse errors of point forecasters.
� The model misspecification and data noise in wind power are separately evaluated.
� The competitive performance and robustness of the proposed method were proved.
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a b s t r a c t

Due to the economic and environmental benefits, wind power is becoming one of the more promising
supplements for electric power generation. However, the uncertainty exhibited in wind power data is
generally unacceptably large. Thus, the data should be accurately evaluated by operators to effectively
mitigate the risks of wind power on power system operations. Recognizing this challenge, a novel deep
learning based ensemble approach is proposed for probabilistic wind power forecasting. In this approach,
an advanced point forecasting method is originally proposed based on wavelet transform and convolu-
tional neural network. Wavelet transform is used to decompose the raw wind power data into different
frequencies. The nonlinear features in each frequency that are used to improve the forecast accuracy are
later effectively learned by the convolutional neural network. The uncertainties in wind power data, i.e.,
the model misspecification and data noise, are separately identified thereafter. Consequently, the prob-
abilistic distribution of wind power data can be statistically formulated. The proposed ensemble
approach has been extensively assessed using real wind farm data from China, and the results demon-
strate that the uncertainties in wind power data can be better learned using the proposed approach
and that a competitive performance is obtained.

� 2016 Published by Elsevier Ltd.

1. Introduction

Due to the continuous decrease in the storage capacity of fossil
fuel, the energy crisis is becoming more significant than ever [1].
Therefore, to mitigate the energy crisis, regulatory acts that
encourage the use of renewable energy have been promoted
worldwide. Among the renewable energy resources, wind energy,
as an alternative to fossil energy, has attracted much attention
due to its beneficial impacts on climate change mitigation and

environmental pollution reduction [2]. Coupled with its mature
technology, wind energy has experienced an unexpected annual
growth on a global scale. Wind energy can be used to drive engines
directly and provide rural energy services. In [3], a novel mean flow
acoustic engine with a cross-junction configuration was designed
to convert wind energy in a pipeline into acoustic energy, and its
efficiency was numerically analyzed in [4] by using computational
fluid dynamics method. In practice, wind energy is mainly utilized
to mechanically power generators for electricity. The annual
growth rate of worldwide wind power has been between 20% to
35% per year since 2000 [5]. However, due to the chaotic nature
of the earth’s atmosphere, wind generated power always exhibits
nonlinear and non-stationary uncertainties, which pose great chal-
lenges for the management and operations of electric power and
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energy systems. It is demonstrated in [6] that the impact of these
uncertainties on power system operations can be, to a certain
degree, mitigated via advanced WPF methods, which are consid-
ered to be the most promising solutions for the integration of a
large amount of wind energy into power grids. Aimed at this task,
three typical methodologies for WPF have been proposed in the lit-
erature, including physical modeling, statistical methods and soft-
computing techniques.

Physical modeling methods try to establish an accurate mathe-
matical model for WPF using various geographical and meteoro-
logical information. However, this type of approach may not be
applicable for practical real-time prediction tasks due to the high
amount of calculation costs involved [7,8], whereas statistical
approaches manage to develop an optimal relationship between
future wind power and historical samples via error minimization.
In [9], a generalized WPF model was proposed based on time-
varying threshold autoregressive moving average, and the effi-
ciency was numerically analyzed. In [10], a hybrid statistical
approach in combination with empirical wavelet transform, partial

auto-correlation function and Gaussian process regression was
proposed. Simulation results indicate that the suggested approach,
i.e., the generalized WPF model, performed the best among the
three compared methods. In addition, soft-computing techniques,
such as the artificial neural network [11,12] and Elman neural net-
work [13], were utilized for WPF. In [14], a WPF model based on
extreme machine learning was presented to evaluate wind power
density. In [15], a multi-layer neural fuzzy network was mooted
for hour-ahead WPF, and the model parameters were well-
trained by using simultaneous perturbation stochastic approxima-
tion. In [16], a hybrid model based on wavelet packet technique
and artificial neural network was originally proposed, and the
model parameters were optimized by using crisscross optimization
algorithm. In [17], reproducing kernel Hilbert space based proba-
bilistic WPF method was proposed and the performance was eval-
uated by CRPS. In [18], the randomness and uncertainty of wind
energy were quantitatively evaluated using Gaussian process
regression and teaching learning optimization. In [19], a general
framework based on k-nearest neighbors algorithm and kernel

Nomenclature

ACE average coverage error
CNN convolutional neural network
DBM deep restricted Boltzmann machine
MWWF milky way wind farm
PI prediction interval
QR quantile regression
SIWF Shangchuan island wind farm
WPF wind power forecasting
An wavelet approximation signal
Dn wavelet detail signal
DSmu dataset used for model uncertainty evaluation
GD Gaussian distribution
Ii
a PI at time step i given PINC = 100(1 � a)%
Mdu mean of data noise uncertainty
NE number of ensembles
NS number of training samples
W CNN’s weight matrix
WL

log weight matrix at Lth logistic regression layer
T length of the signal required to be decomposed
b CNN’s bias matrix
bLlog bias matrix at Lth logistic output layer
c CNN’s additive bias matrix
d output vector size of training samples
f(�) output activation function
hj
i the jth target in ith training sample

m mini-batch size of training sample
t discrete time step
up (�) up-sampling function
wi,j

l weight matrix at lth layer connecting the ith input map
and jth output map

xi,j,k the ith input in jth input map at kth layer
y
_ðxiÞ mean of the estimated model uncertainty
yjl the jth output map at lth layer
y
_

l
ðxiÞ output of the jth deep CNN model

a confidence level parameter
blsub multiplicative bias matrix at lth sub-sampling layer
clen,wid average filter parameter matrix with size len � wid
e(xi) uncertainty given the input xi
j translation variable
/(�) mother wavelet function
r2
mu variance of model uncertainty

re2 variance of the uncertainty signal e(xi)

BP back-propagation algorithm
CRPS continuous ranking probability score
IS interval sharpness
NN neural network
PINC prediction interval nominal confidence
SAE stacked auto-encoder
SVM support vector machine
WT wavelet transform
CDFi cumulative distribution function at time step i
DSdu dataset used for data noise uncertainty evaluation
Em squared-error loss function considering m batches
H(�) indicative function
Lh
a lower bound of PI given target h and PINC
Me mean of the uncertainty signal e(xi)
NM number of selected input maps
Uh
a upper bound of PI given target h and PINC

Wl
con weight matrix at lth convolution layer

WSi
a wind speed at time step i given PINC

bj
l bias of jth output map at lth layer

blcon bias matrix at lth convolution layer
cj
l additive bias of jth output map at lth layer
clsub additive bias matrix at lth sub-sampling layer
down (�) down-sampling function
g(�) signal required to be decomposed by wavelet
len length of a given map
ri indicator of prediction interval coverage probability
uL output vector of the neurons in (L � 1) layer
wid width of a given map
xil the ith input map at lth layer
xL�1 the output of the neurons at (L � 1)th layer
yi,j,k the ith output in jth output map at kth layer
yj
i the jth output in ith training sample

z1�a/2 critical value of a Gaussian distribution function
b CNN’s multiplicative bias matrix
bj
l multiplicative bias of the jth output map at lth layer

di
a width of the PI at time step i given PINC
g learning rate
t scaling variable
r2
du variance of data noise uncertainty

r2
h variance of total forecasting error
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