Applied Energy 188 (2017) 56-70

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Deep learning based ensemble approach for probabilistic wind power forecasting

Huai-zhi Wang^a, Gang-qiang Li^a, Gui-bing Wang^{b,*}, Jian-chun Peng^a, Hui Jiang^c, Yi-tao Liu^a

^a The College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

^b Shenzhen Key Laboratory of Urban Rail Transit, The College of Urban Rail Transit, Shenzhen University, Shenzhen 518060, China

^c The College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

HIGHLIGHTS

• Convolutional neural network is designed for probabilistic wind power forecasting.

- Ensemble technique is used to cancel out the diverse errors of point forecasters.
- The model misspecification and data noise in wind power are separately evaluated.
- The competitive performance and robustness of the proposed method were proved.

ARTICLE INFO

Article history: Received 9 September 2016 Received in revised form 8 November 2016 Accepted 26 November 2016

Keywords: Convolutional neural network Ensemble Probabilistic wind power forecast Deep learning Wavelet transform

ABSTRACT

Due to the economic and environmental benefits, wind power is becoming one of the more promising supplements for electric power generation. However, the uncertainty exhibited in wind power data is generally unacceptably large. Thus, the data should be accurately evaluated by operators to effectively mitigate the risks of wind power on power system operations. Recognizing this challenge, a novel deep learning based ensemble approach is proposed for probabilistic wind power forecasting. In this approach, an advanced point forecasting method is originally proposed based on wavelet transform and convolutional neural network. Wavelet transform is used to decompose the raw wind power data into different frequencies. The nonlinear features in each frequency that are used to improve the forecast accuracy are later effectively learned by the convolutional neural network. The uncertainties in wind power data, i.e., the model misspecification and data noise, are separately identified thereafter. Consequently, the probabilistic distribution of wind power data can be statistically formulated. The proposed ensemble approach has been extensively assessed using real wind farm data from China, and the results demonstrate that the uncertainties in wind power data can be better learned using the proposed approach and that a competitive performance is obtained.

© 2016 Published by Elsevier Ltd.

1. Introduction

Due to the continuous decrease in the storage capacity of fossil fuel, the energy crisis is becoming more significant than ever [1]. Therefore, to mitigate the energy crisis, regulatory acts that encourage the use of renewable energy have been promoted worldwide. Among the renewable energy resources, wind energy, as an alternative to fossil energy, has attracted much attention due to its beneficial impacts on climate change mitigation and

* Corresponding author.

environmental pollution reduction [2]. Coupled with its mature technology, wind energy has experienced an unexpected annual growth on a global scale. Wind energy can be used to drive engines directly and provide rural energy services. In [3], a novel mean flow acoustic engine with a cross-junction configuration was designed to convert wind energy in a pipeline into acoustic energy, and its efficiency was numerically analyzed in [4] by using computational fluid dynamics method. In practice, wind energy is mainly utilized to mechanically power generators for electricity. The annual growth rate of worldwide wind power has been between 20% to 35% per year since 2000 [5]. However, due to the chaotic nature of the earth's atmosphere, wind generated power always exhibits nonlinear and non-stationary uncertainties, which pose great challenges for the management and operations of electric power and

E-mail addresses: wanghz@szu.edu.cn (H.-z. Wang), ligq@szu.edu.cn (G.-q. Li), wanggb@szu.edu.cn (G.-b. Wang), jcpeng@szu.edu.cn (J.-c. Peng), huijiang@szu.edu. cn (H. Jiang).

Nomenclature

ACE	average coverage error	BP	back-propagation algorithm
CNN	convolutional neural network	CRPS	continuous ranking probability score
DBM	deep restricted Boltzmann machine	IS	interval sharpness
MWWF	milky way wind farm	NN	neural network
PI	prediction interval	PINC	prediction interval nominal confidence
QR	quantile regression	SAE	stacked auto-encoder
SIWF	Shangchuan island wind farm	SVM	support vector machine
WPF	wind power forecasting	WT	wavelet transform
A_n	wavelet approximation signal	CDF _i	cumulative distribution function at time step <i>i</i>
D_n	wavelet detail signal	DS_{du}	dataset used for data noise uncertainty evaluation
DS _{mu}	dataset used for model uncertainty evaluation	E_m	squared-error loss function considering <i>m</i> batches
GD	Gaussian distribution	$H(\cdot)$	indicative function
I_i^a	PI at time step <i>i</i> given PINC = $100(1 - \alpha)$ %	L_h^{α}	lower bound of PI given target <i>h</i> and PINC
M _{du}	mean of data noise uncertainty	M_{ϵ}	mean of the uncertainty signal $\varepsilon(\mathbf{x}_i)$
NE	number of ensembles	N _M	number of selected input maps
Ns	number of training samples	U_h^{α}	upper bound of PI given target h and PINC
Ŵ	CNN's weight matrix	W ^l con	weight matrix at <i>l</i> th convolution layer
W_{log}^L	weight matrix at <i>L</i> th logistic regression layer	WS_i^a	wind speed at time step <i>i</i> given PINC
T	length of the signal required to be decomposed	b_i^l	bias of <i>i</i> th output map at <i>l</i> th layer
b	CNN's bias matrix	\mathbf{b}_{con}^{l}	bias matrix at <i>l</i> th convolution layer
b ^L _{log}	bias matrix at <i>L</i> th logistic output layer	C_i^l	additive bias of <i>j</i> th output map at <i>l</i> th layer
c	CNN's additive bias matrix	c_{sub}^{\dagger}	additive bias matrix at <i>l</i> th sub-sampling layer
d	output vector size of training samples	down (·)	down-sampling function
$f(\cdot)$	output activation function	g(.)	signal required to be decomposed by wavelet
h_i^i	the <i>i</i> th target in <i>i</i> th training sample	len	length of a given map
m	mini-batch size of training sample	r _i	indicator of prediction interval coverage probabilit
t	discrete time step	u ^L	output vector of the neurons in $(L-1)$ layer
up (•)	up-sampling function	wid	width of a given map
$\mathbf{w}_{i,i}^{l}$	weight matrix at <i>l</i> th layer connecting the <i>i</i> th input map	\boldsymbol{x}_{i}^{l}	the <i>i</i> th input map at <i>l</i> th layer
0	and <i>j</i> th output map	\mathbf{x}^{L-1}	the output of the neurons at $(L-1)$ th layer
$\mathbf{x}_{i,i,k}$	the <i>i</i> th input in <i>j</i> th input map at <i>k</i> th layer	y i.i.k	the <i>i</i> th output in <i>j</i> th output map at <i>k</i> th layer
$\widehat{y}(\boldsymbol{x_i})$	mean of the estimated model uncertainty	v_i^i	the <i>i</i> th output in <i>i</i> th training sample
\mathbf{y}_{i}^{l}	the <i>j</i> th output map at <i>l</i> th layer	$Z_{1-\alpha/2}$	critical value of a Gaussian distribution function
$\widetilde{y}(\boldsymbol{x_i})$	output of the <i>i</i> th deep CNN model	β	CNN's multiplicative bias matrix
d	confidence level parameter	β_i^l	multiplicative bias of the <i>j</i> th output map at <i>l</i> th lay
β_{sub}^{l}	multiplicative bias matrix at <i>l</i> th sub-sampling layer	δ_i^a	width of the PI at time step <i>i</i> given PINC
Ylen wid	average filter parameter matrix with size $len \times wid$	η	learning rate
$\varepsilon(\mathbf{x}_i)$	uncertainty given the input \mathbf{x}_i	υ	scaling variable
κ	translation variable	σ_{du}^2	variance of data noise uncertainty
$\phi(ullet)$	mother wavelet function	σ_h^2	variance of total forecasting error
σ_{mu}^2	variance of model uncertainty		-
σ_{ε}^{2}	variance of the uncertainty signal $\varepsilon(\mathbf{x}_i)$		

rediction interval coverage probability of the neurons in (L-1) layer en map map at *l*th layer the neurons at (L-1)th layer in *i*th output map at *k*th layer in *i*th training sample of a Gaussian distribution function icative bias matrix bias of the *i*th output map at *l*th layer PI at time step *i* given PINC le ita noise uncertainty tal forecasting error auto-correlation function and Gaussian process regression was proposed. Simulation results indicate that the suggested approach, i.e., the generalized WPF model, performed the best among the three compared methods. In addition, soft-computing techniques, such as the artificial neural network [11,12] and Elman neural network [13], were utilized for WPF. In [14], a WPF model based on extreme machine learning was presented to evaluate wind power density. In [15], a multi-layer neural fuzzy network was mooted for hour-ahead WPF, and the model parameters were welltrained by using simultaneous perturbation stochastic approximation. In [16], a hybrid model based on wavelet packet technique and artificial neural network was originally proposed, and the model parameters were optimized by using crisscross optimization algorithm. In [17], reproducing kernel Hilbert space based probabilistic WPF method was proposed and the performance was evaluated by CRPS. In [18], the randomness and uncertainty of wind energy were quantitatively evaluated using Gaussian process

regression and teaching learning optimization. In [19], a general

framework based on k-nearest neighbors algorithm and kernel

energy systems. It is demonstrated in [6] that the impact of these uncertainties on power system operations can be, to a certain degree, mitigated via advanced WPF methods, which are considered to be the most promising solutions for the integration of a large amount of wind energy into power grids. Aimed at this task, three typical methodologies for WPF have been proposed in the literature, including physical modeling, statistical methods and softcomputing techniques.

Physical modeling methods try to establish an accurate mathematical model for WPF using various geographical and meteorological information. However, this type of approach may not be applicable for practical real-time prediction tasks due to the high amount of calculation costs involved [7,8], whereas statistical approaches manage to develop an optimal relationship between future wind power and historical samples via error minimization. In [9], a generalized WPF model was proposed based on timevarying threshold autoregressive moving average, and the efficiency was numerically analyzed. In [10], a hybrid statistical approach in combination with empirical wavelet transform, partial Download English Version:

https://daneshyari.com/en/article/4911116

Download Persian Version:

https://daneshyari.com/article/4911116

Daneshyari.com