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The rapid, cost-effective, and non-disruptive assessment of bridge deck condition has emerged as a critical chal-
lenge for bridgemaintenance. Deck delaminations are a common form of deterioration which has been assessed,
historically, through chain-drag techniques andmore recently through nondestructive evaluation (NDE) includ-
ing both acoustic and optical methods. AlthoughNDEmethods have proven to be capable to provide information
related to the existence of delaminations in bridge decks, many of them are time-consuming, labor-intensive, ex-
pensive, while they further require significant disruptions to traffic. In this context, this article demonstrates the
capability of unmanned aerial vehicles (UAVs) equipped with both color and infrared cameras to rapidly and ef-
fectively detect and estimate the size of regions where subsurface delaminations exist. To achieve this goal, a
novel image post-processing algorithm was developed to use such multispectral imagery obtained by a UAV.
To evaluate the capabilities of the presented approach, a bridge deck mockup with pre-manufactured defects
was tested. The major advantages of the presented approach include its capability to rapidly identify locations
where delaminations exist, aswell as its potential to automate bridge-deck related damage detection procedures
and further guide investigations using other higher accuracy and ground-based approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade there has been increasing recognition of the im-
portance of rapid and cost-effective techniques to assess the condition
of bridge decks. In addition to their impact on ride quality, bridge
decks serve as a key load-carrying element and the principal environ-
mental protection system for the superstructure. Furthermore, although
they represent only a small portion of the initial cost of the bridge, they
account for between 50% and 85% of bridge maintenance funds [1]. As a
result, tools capable of identifying early deterioration and thus enabling
preventive and more cost-effective interventions have potential to sig-
nificantly reduce the life-cycle cost of bridges.

Currently, there aremanydifferent nondestructive evaluation (NDE)
methods for identifying damage in bridge decks including impact echo,
ground penetrating radar, and several others which require contact
with the structure [2]. Some of these techniques have been recently
placed on a robotic platform and used simultaneously to achieve a com-
bined evaluation of the bridge deck [3]. Furthermore, non-contact
methods for damage identification include multispectral imaging, light

detection and ranging, as well as digital image correlation which have
been demonstrated to identify both surface and subsurface damage in
the case of infrared (IR) imaging [4]. The major benefits of non-contact
imagery are the speed at which data can be collected, the full field na-
ture of such data, and the ease of interpreting them when compared
to many other methods.

Infrared thermography (IRT) imaging has been used in several NDE
applications [5]. For example, infrared images have been used to deter-
mine themoisture content in roofs and analyze the performance of wet
insulation [6,7]. In addition and along with other NDE methods, IRT has
applications is robotic tunnel inspection [8]. Active thermography in-
volves a heat source ormechanical stimulation used as excitation inputs
to identify defects and has been demonstrated in aerospace NDE appli-
cations primarily involving honeycomb structures [9]. Both active and
passive thermography have been shown to identify defects in elements
of bridges, such as delaminations in bridge decks [10,11]. Specifically,
detection of subsurface defects in concrete structures was based on
heat transfer changes in flawed regions detected by temperature gradi-
ents [12–14]. Heat sources in these applications are provided typically
either by external heating or by solar radiation [15]. In addition, both in-
frared and color cameras have been used to perform visual inspections
using vans or boats for top and side views of structures [16]. Infrared
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images have been combinedwith GPS and image stitching tools to form
geographic information system representations of a bridge deck [17].
Infrared thermography was further used in conjunction with acoustic
approaches tomonitor damage on amasonry walls under cyclic loading
[18], or detect damage in concrete structural components [19].

Unmanned aerial vehicles (UAVs) have been extensively used for
military applications while several civil applications are currently
being developed for remote sensing [20,21]. For instance, color and in-
frared images acquired by a UAVwere used to identify people in rescue
operations [22]. In addition,multiple UAVswere used simultaneously to
identify forest fires using color and IR images [23]. Near infrared (NIR)
images obtained from a UAV have been used to identify crops from
other objects like soil [24]. Similarly, IR images were used to determine
the health of olive trees using an estimate of chlorophyll content and
water distress [25]. Moreover, gas pipeline inspection was proposed
usingmultispectral imaging and synthetic aperture radar, while recent-
ly permissionwas given to private contractors to survey pipelineswith a
UAV [26,27].

The use of UAVs in infrastructure assessment has been increasingly
explored in the recent past. For instance, a helicopter UAV was used to
power and read measurements from a wireless sensor [28]. A proof of
concept for the use of a quadrotor has been investigated for the identi-
fication of power line joints using high resolution images and image
processing [29]. A laser scanner and RGB-D sensor were added to a
UAV to obtain point cloud information of outdoor buildings for inspec-
tions purposes [30]. In addition, an image based 3D point cloud recon-
struction of a pedestrian bridge was completed by Lattanzi et al. [31]
using a dense structure from motion method applied to UAV imagery.
Despite challenges, this method could provide a global view of the
structure as a tool to identify and locate damage.

For all applications involving remote sensing, especially systems that
result into large datasets, it is important to eliminate redundant or insig-
nificant data without removing important information. To achieve this
objective,many image processing algorithms have been used to identify
objects from images. For example, color was used with machine learn-
ing to classify images with rusted areas on bridges using a robotic plat-
form [32]. In this context, theHough transformhas been used to identify
lines in vineyards from UAV images to find unhealthy plants [33]. Fur-
thermore, edge detectionwas used to identify cracks in building facades
using UAV imagery [34]. Moreover, amethodwas developed using a re-
gion growing technique to identify delaminations from IR images of a
manufactured concrete block with known defects [35].

In this article, a multirotor UAVwas used to detect delaminations as
well as to estimate their size in a mock up bridge deck based on IR and
color imaging data. The locations of the delaminations were not known
prior testing. The IR data was recorded onboard and was streamed back
to the pilot during the flight which allowed themanual identification of
defects in real time, justifying the capability of rapid inspection. The data
collected was used post mortem by a novel post-processing algorithm
which is based on the calculation of grayscale gradients and their direc-
tions in the IR images to detect and estimate the size of subsurface de-
laminations. The results obtained by using the UAV imagery were
further validated by performing similar measurements with a similar
multispectral payload attached to a moving cart to compensate for
both payload and UAV motion uncertainties in the proposed approach.

2. Equipment

2.1. UAV and payload

A commercially available six-rotor UAV was used to conduct the ae-
rial experiments. Fig. 1 shows each of the components involved in the
payload and their exact positions on the UAV. Although the system is
equipped with GPS, gyroscope, accelerometer, and pressure sensor for
flight control and stabilization, the pilot flew the system manually for
the measurements reported in this article, due to the close proximity

of obstacles; however a completely autonomous flight is also possible.
The UAV carried both a GoPro Hero 3+ silver edition color camera
and a FLIR Tau 2 uncooled core IR camera to capture video imagery in
real time from the bridge deck. The specific IR camera used is unable
to make actual and accurate temperature measurements and the only
output provided is a video of surface temperature gradients. At first,
the color camerawas placed on a gimbal to keep it levelwith the ground
at all times, but due toweight limitations, the IR camerawasfixed to the
bottom of the UAV with a vibration dampening system instead of plac-
ing it on a gimbal. Difficulties in matching the color and IR data resulted
in testing with both cameras fixed to the bottom of the UAV to deter-
mine a constant transformation between the cameras. The constant
transformation was calculated using an over determined direct linear
transformation or homographymatrix [36]. At least four corresponding
points in each image are required to solve for the transformation. Due to
theway the cameras were installed on theUAV, the transformationwas
assumed to have scaling, rotation about the axis perpendicular to the
image plane, and rotation within that plane. Therefore, only two corre-
sponding points were necessary to calculate the similarity transforma-
tion. Up to corresponding 10 points were used in each set image to
increase the accuracy of the transformation by using a least squares
best fit. These corresponding points were manually selected in 10 sets
of corresponding images. The rotation was negligible and the standard
deviation associated with the translation was 4 pixels in the horizontal
direction and 5 pixels in the vertical direction.

The color video was recorded using the memory card inside the
camera and the IR video was saved onto a second memory device
using an onboard digital video recorder (DVR). The color video had a
138° diagonal field of view, resolution of 1920 × 1080 pixels, and re-
corded at 30 frames per second. The IR camera had a 69° diagonal
field of view, resolution of 324 × 256 pixels, and also recorded at 30
frames per second. The ground sample distance varied with the height
of the cameras, which was not obtained during the test. The range of
ground sample distance varied between 2.5 mm (at 2 m height) and
1.3 cm (at 10m height) throughout the test. Both videoswere streamed
to the pilot using 2.4 GHz for the high definition color video and 5.8 GHz
for the standard definition IR video. Fig. 2a shows an example of an IR
image placed over the RGB image after the test. The UAV images were
streamed back to the pilot allowing changes in the flight pattern based
on areas of interest and observation in real time of potential
delaminations.

The videos were recorded by the UAV to ensure no frames of the
video were missing due to radio frequency interference caused by pos-
sible obstacles between the system and the ground station. Both videos
were projected real-time onto screens so the pilot could see what the
UAV was capturing. A diagram of the data flow and an image of the
ground station and UAV are shown in Fig. 3. The receiving antennas
were placed outside of the van for the experiments to limit the problem
of shielding which would cause breaks and jumps in the video streams.

Due to the number of video components on the system and the need
to control the video systems separately, a second battery was added to
the system to power the video components. The total takeoff weight
of the system during the flights was 2.6 kg which is close to the maxi-
mum recommended takeoff weight for this UAV. Despite this added
weight, the system achieved flight times of up to 7.5 min.

2.2. Validation equipment

A ground system including again both infrared and color cameras
was used to validate the results obtained by the UAV. A GoPro and a
FLIR a325sc were attached to a rolling cart and moved along the deck
to identify the delaminations. Fig. 4 below shows the setup of the FLIR,
GoPro, power, and recording system contained on a cart. Since a gener-
atorwas used to supply power, thewhole system could bemoved easily
without connection or range problemsdue to power cords. This allowed
for smoother movements which made the data easier to process.
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