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Despite abundant energy use data, few facilities managers have a good benchmark for tracking energy perfor-
mance in commercial buildings. Building energy self-benchmarking is an effective means of comparing perfor-
mance to expectations. This paper presents an improved theory for a decision support tool that can self-
benchmark building energy performance, identify energy faults, and quantify their severity. Detailed building
energy simulation modeling of a big-box retail store with open source software is accessible and economical to
industry for generating performance benchmarks. Methods of parametric sampling and uncertainty analysis
are enhanced with detailed parameter uncertainty characterization. Uncertainty and sensitivity analysis are
used to adjust risk tolerance thresholds for each unique monitored end-use. A dynamic cost function allows util-
ity theory to compute expected costs coveringmultiple criteria. Improved theory for decision support tool is test-
ed on ten faulted model scenarios placed in three climate zones. Finally, we demonstrate fault response
prioritization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Standards such as LEED® guide energy efficient design, but the
energy savings predicted by the designmodels oftendeviate significant-
ly from actual building usage data [1]. The root causes of this gap
include: (1) inaccurate assumptions in the design energymodel relating
to design, occupant behavior, or control strategies, (2) improper
execution of intended construction, (3) unintended control strategies
in the operation of building systems, and (4) poor assumptions in de-
sign [2]. Building energy performance benchmarking can reveal
the presence of “faulted” operational states, as well as quantify the se-
verity of these faults. There are two primary classes of building perfor-
mance benchmarking: peer comparison of performance among other
similar buildings, and self-benchmarking compared to an ideal baseline.

This paper is focused on a tool for performing building self-
benchmarking; one which requires a relatively high level of expertise
to utilize.

Installing sub-metering infrastructure that monitors and records
building energy end-uses can provide rich data for building energy
self-benchmarking and is a prevailing trend for commercial build-
ings [3]. There is growing potential to utilize sub-metered data from
categorical building systems' end-uses as a feedback mechanism that
can help bridge the gap between intended and actual operation [4].
There are vast amounts of building energy data available to facilities
managers (FM), however FM lack the resources to analyze it. Thus, the
FM typically does not know if their buildings perform as they were
intended.

Henze et al. [5] developed the concept of an Energy Signal Tool for
operational performance decision support, which ismademore credible
and accurate with uncertainty analysis (UA) and probabilistic model
predictions. The tool alerts facilities managers of building consumption
anomalies across a variety of monitored end-use categories. Henze et al.
[5] used utility theory tomergemeasured consumptiondata, probabilis-
tic predictions, and a scalar cost function to provide easily interpreted
visual results in the form of a five-level traffic light. In their work,
user-defined risk tolerance thresholds give the user decision support
for addressing and prioritizing energy-related faults in reference to
measurements taken over a rolling retrospective period. The authors
based their investigation on reduced order models developed in the
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Matlab technical computing environment for ease of data processing
and maximum theoretical development.

This paper builds upon the concepts for an Energy Signal Tool
(ESTool) as proposed by Henze et al. [5] with a more detailed
modeling platform and alterations to the foundational theory. Here we
use open-source detailed building energy simulation software common
to engineering practitioners to create probabilistic predictions of perfor-
mance. This paper also explores the use of UA and sensitivity analysis
(SA) in the context of setting risk tolerance thresholds, for which
there is little previous research. We also show that risk-tolerance
thresholds can be defined in a more sophisticated manner than
arbitrary levels, involving a combination of probabilistic state masses
and straightforward user input. The application of utility theory is
enhanced by a novel approach of accepting input to the cost
function from an ordinary user with several organizational objectives
in mind.

2. Review of energy performance benchmarking practices

The US Environmental Protection Agency (EPA) offers information
on building performance assessment and benchmarking through its En-
ergy Star Portfolio Manager program [6]. This system has participation
from 40% of the US commercial building stock, which belies the simplic-
ity of its use [6]. Individual building performance is compared to a peer
group from themost recent Commercial Buildings Energy Consumption
Survey (CBECS) data set, yielding a score that is a product of “a statistical
regressionmodel that correlates the energy data to the property use details”
[6,7]. This rating system is themost rigorous peer benchmarking system
of its kind in the United States [8]. Portfolio manager is an excellent
starting point, and can help cities track goals toward progress such as
Architecture 2030, but falls short of offering a benchmark that supports
energy management activities. For example, Hinge et al. [9] found that
Portfolio Manager scores for primary education facilities in the North-
east depended heavily on the amenities of the building (e.g., ventilation
levels, technology), and the experience level of the facilities manage-
ment personnel. Peer groups are static; an upgrade to the functions
that a building provides will result in a reduced Portfolio Manager
score [9]. Peer benchmarking in general also does not show efficiency
gainswhen improvements in one end-use have been offset by changing
operations that affect another.

A customized portfolio benchmarking method for restaurants was
explored by Hedrick et al. [10]. The authors demonstrated that a bench-
marking system tailored to each restaurant is the best way to evaluate
performance. They took a statistical approach to benchmarking by de-
riving regression models for expected performance from best correla-
tion of independent variables such as hours of operation, facility type,
and observations in weather. This type of benchmark reveals whether
or not one particular store is an outlier in the data set on a qualitative
basis. It has the advantage of simplicity to the user, butmay not be accu-
rate independent variables that are hard to measure, such as local
heating degree days (HDD) and cooling degree days (CDD), are missing
or inaccurate.

With the increasing amount of sub-metered energy data available, it
is a trend in industry to have more interest in advanced energy self-
benchmarking. This has created the opportunity for a number of soft-
ware as a service (SaaS) platforms being offered by companies such as
Building IQ and Ecova-Verisae that are in high industry demand. These
SaaS platforms offer features such as machine learning algorithms that
use buildingmanagement system (BMS) data to filter out faulted condi-
tions from normal anomalies to develop unique fit mathematical
models capable of predictive optimization [11]. They also offer proactive
optimization analysis in real time with expert staff available to guide
customers to energy savings priorities [12]. This is excellent for
managing opportunities in a building portfolio, but SaaS platforms are
driven by reduced ordermodels that use a select few observed environ-
mental variables to predict normal energy consumption patterns.

Mathematical algorithms cannot handle simple inputs such as opera-
tional schedules and HVAC controls logic that a detailed energy model
can. This type of benchmarking solution does not offer combined deci-
sion support with energy benchmarks as well as other organizational
priorities as inputs. Incorporating other goals, such as human comfort
and sales, into the picturewill be especially as businesses increase ener-
gy efficiency and thus decrease the cost share that energy has on their
overall plan.

3. Literature review

Uncertainty analysis (UA) quantifies the uncertainty in model out-
comedue to the uncertainty that exists in the set ofmodel input param-
eters [13]. Detailed energy simulation models have thousands of input
parameters characterizing the usage patterns, operational strategy,
and physical properties of a building and its systems. Even for existing
buildings with extensive construction and operational documentation,
there are uncertainties in some parameters such as outdoor air infiltra-
tion rate, occupancy schedules, and equipment performance curves.
When using a detailed energy simulation model as a performance
benchmark, it is a sure thing that a point estimate of energy use during
any given period produced by the model will differ from the measured
value. Various combinations of parameter values in the model will re-
sult in a range of model outcomes. UA is an important component of
simulationmodels used for decision-making, as it acknowledges the un-
knowns that go into establishing a baseline [14]. Hopfe and Hensen [15]
have demonstrated robust methods in which UA can be used in con-
junction with sensitivity analysis to improve the decision making pro-
cess in building design.

Booth and Choudhary [16] propose a framework of UA for assessing
the potential impact of energy efficiency policy in UK housing. Their
goal was to minimize the financial risk of program implementation to
the UK government by providing a range of expected outcomes that re-
sult from retrofit measures that allows for spending prioritization.
Wang et al. [17] used Monte Carlo analysis (MCA) to examine
the uncertainties in building performance due to model accuracy,
modeling assumptions, climatic data, and actual operational practices.
These authors found a spread of up to 100% in energy consumption be-
tween a building operating in the worst and best possible manner,
which is far greater than contributions most design features could
make. Bucking et al. [18] used probability distributions of parameters
extracted from solutions to a Net Zero Energy (NZE) building optimiza-
tion algorithm to characterize uncertainty in energy performance. They
generated probable ranges of energy performance by using random
MCA sampling with batch sizes of 1000 models to sample from 26
uncertain model parameters. These authors were able to extract proba-
bility distribution functions of parameters that showed which values
were most likely to result in a NZE-compliant design. Several other au-
thors have worked with UA for building design optimization purposes
[18–21].

Calibration of a benchmark model is crucial for the success of self-
benchmarking methods. Statistical calibration of a model is very chal-
lenging, as there are thousands of knobs to turn that could all potentially
have an impact on helping the model match the measured data. This
issue of over-parameterization is compounded by limitations in compu-
tational power. Saltelli et al. [22] show howmodel parameter space can
be reduced with a combination of local pre-screening and global sensi-
tivity analysis. There are many examples of studies in the literature
where the dozens of parameters that are contained in building simula-
tion models are reduced to fewer than ten that have high significance
to the model outcome [15,18,21].

In Heo et al. [23] a scalable, probabilistic methodology is presented
that is based on Bayesian calibration of normative energy models.
Based on CEN-ISO building standards, normative energy models are
light-weight, quasi-steady state formulations of heat balance equations,
which makes them appropriate for modeling large sets of buildings
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