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Measurements from sensors and knowledge of key parameters are of great importance in the operation of modern
building systems. Accurate and reliable information as these serves as the base for ensuring the desired performance
of control algorithms, fault detection and diagnostics rules, analytical optimization strategies. They are also crucial
for developing trust-worthy building models. However, unlike mass produced industrial devices, building systems
are generally one of a kind and sparsely instrumented. Despite the indispensable need, dense deployment of sensors
or a periodic manual calibration for ensuring the quality of thousands variables in building systems is not practical.
To address the challenge, we extend our virtual in-situ calibration method by marrying it with Bayesian inference,
which has a better capability in handling uncertainties. Strategies, including local, global, and combined calibration,
are evaluated in a case with various sensor errors and uncertain parameters. The detailed procedure and results are
presented.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Energy used for heating, ventilation, air conditioning, and refrigera-
tion systems (HVAC&R) is a large part of the total energy consumed in
buildings to provide a proper indoor environment for occupants [1,2].
Issues, including problematic or inferior control sequences and set
points, equipment performance degradation and various faults occur-
ring in HVAC&R and building energy systems further increase energy
use or can lead to undesired indoor environmental quality. To address
the challenges in the building sector, a comprehensive solution package,
including continuous fine-tuning of building automation systems, auto-
mated analytical optimization, and automated fault detection, diagnos-
tics and repair, is needed. Research into these challenges has been
conducted in order to help mitigate increasing energy use in buildings
[3–8]. Most of the proposed approaches will be effective only if the
data obtained from sensors are reliable and accurate [3]. In the field of
smart buildings, the role of sensors is significant for ensuring and en-
hancing building performance.

Physical sensors thatmeasure variables in termsof the building or sys-
tem conditions are vulnerable to theworking conditions and tend to have
errors related to these vulnerabilities. The sensor errors can be catego-
rized into two major types [9]: (1) systematic errors (bias or offset) and
(2) randomerrors (noise). Systematic errors are indicated by the discrep-
ancy between the mean of measurements and measurands (their true
value). They may occur because of the sensor's physical condition, mea-
sured phenomena, working environments, or other factors. For instance,

Yu. et al. [10] found that systematic errors of commonly preinstalled
supply-air temperature sensors in compact rooftop air conditioners
could be have errors up to 19.2 °C due to their compact size, poor air dis-
tribution, and intensive thermal radiation of a gas heating chamber. Ran-
dom errors are indicated by the difference between the measurements
and theirmean. They are caused by external problems that affect the sen-
sor readings or hardware noise. Randomerrors can be detected by a prob-
ability distribution, such as Gaussian, in some cases. A random error with
a large standard deviation indicates measurement inaccuracies. Regard-
less of how advanced the building automation and control algorithms
are, these rudimentary errors from sensors adversely affect analysis and
thereby lead to inferior building system performance.

Periodic calibration is needed to improve the reliability of measure-
ments fromworking sensors. In a conventional calibration [11–15],work-
ing sensors can be calibrated by reducing the difference between the
values obtained from working sensors or using benchmarks from stan-
dards and reference sensors in given conditions [14,15]. Usually, such a
calibration requires a process of removing and reinstalling the sensor to
itsworking environment. Considering the features of building sensor net-
work, the conventional method has practical problems [16]: (1) time and
monetary cost for reinstalling sensors; (2) disruption to a normal opera-
tion; (3) difficulty in accessing various sensors in pipelines, hidden spaces,
etc.; and (4) different working environments with the performed condi-
tions for a calibration. Recently, to overcome these limitations in building
systems, Yu and Li [16] proposed a virtual in-situ calibrationmethod. This
method can determine the benchmarks that are either statistically
established or mathematically modeled, without removing the embed-
ded working sensor in a system or adding extra reference sensors as in
a conventional calibration. More specifically, the statistical-basedmethod
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determines a benchmark value by calculating amean ofmeasurements. It
requires a redundancy of sensors for measuring the same phenomenon.
This is useful for detecting random errors from individual working sen-
sors when sensor redundancy exists. On the other hand, the modeling-
based method can reduce both systematic and random errors without
sensor redundancy. This method uses mathematical equations of a sys-
tem model and known relative variables in the model to estimate the
benchmark values of working sensors. The calibration function is deter-
mined by casting the problem as an optimization problem,
i.e., minimizing the difference between the sensor's measurements and
the benchmarks.

With respect to an operational building system, the relative or de-
pendent variables used in the benchmark model for a specific working
sensor may be defined by (1) measurements from other working sen-
sors in a system and (2) parameters in the systemmodel. There are un-
certainties from both of the sources. Even though all relative variables of
the benchmark are defined bymeasurements fromother sensors,which
might have higher reliability than the target working sensor itself, we
cannot assure that the measured values are always accurate. The accu-
racy is subject to influences from the physical environment when the
measurements are taken. Aswell, parametersmay naturally contain un-
certainties not accounted for when they were determined, e.g. a heat
transfer coefficient, thermal capacitance, etc. Because of these potential
inaccuracies, it is more beneficial to consider all critical working sensors
of a system and relevant unknown parameters of the system in order to
model a virtual in-situ modeling-based calibration process.

When a large number of unknowns is included in a mathematical
calibration, the problem becomes under-determined. It means that the
total number of unknown variables composed of relative variables and
unknown parameters can be inherently greater than that of equations
provided from a systemmodel. It is impossible to calculate the accurate
benchmarks for every unknown variable in an under-determined cali-
bration problem. Severalmodeling-basedmethods have been proposed
in different research fields to convert these to determined problems,
such as an on-line calibration [17], a collaborative calibration [9], a
blind calibration [18], and a self-calibration [19]. In chemistry, various
calibration methods [20–23] use more than one reference sensor for
benchmarks, which can be considered as a known calibration environ-
ment. Literature in this regard mainly comes from fields where sensor
redundancy, high quality sensors, or known relationships between sen-
sors do exist. Unfortunately, it is considerably difficult to adopt any of
these approaches in a building sensor network because a building sys-
tem is not mass produced or well instrumented. There is also a limited
number and quality of sensors for each phenomenon. As well, many
sensors are needed for various building phenomena at different loca-
tions and levels (temperatures, mass flow rates, pressures, etc.).

We argue that, compared to other fields, building systems are compli-
cated and stochastic with multiple unknown parameters and uncer-
tainties, especially when occupants, devices, and ambient environment
all interact. This paper extends virtual in-situ calibration methods by
adding a probabilistic formulation. This approach considers the character-
istic of building sensor networks, typical errors of building sensors, and
limitations of existing calibration methods when applying to an entire
building system. We first briefly present the problem formulation of ex-
tended virtual in-situ calibration. Then, we describe the Monte Carlo
Markov Chain (MCMC) approach to solving the problem. To verify the
suggested method, the algorithm is applied to a LiBr-H2O absorption re-
frigeration system in a virtual environment with pre-defined true values.

2. Extended virtual in-situ calibration formulating using Bayesian
inference

2.1. Benchmark and correction function in virtual in-situ calibration

Conventional and virtual in-situ calibration is driven by an objective
function. It can be expressed as shown in Eq. (1). In this objective

function, the measurements from working sensors are corrected by
minimizing the distance between the measured values and the corre-
sponding benchmark values that are defined by standards or reference
sensors as in Eq. (2).

min
M

D Mð Þ ¼ Yb−Mj j ð1Þ

Yb ¼ SorYb ¼ MR ð2Þ

where, D is the distance function regarding the measurement error,M is
the measurement from the working sensor, Yb is the corresponding
benchmark for the working sensor, S is the known standard value for
the working sensor, andMR is the measurement from the corresponding
reference sensor.

In EVIC (extended virtual in-situ calibration), the benchmarks are
mathematically estimated by equations and relative variables (vr) in a
system model, as in Eq. (3), without the additional reference sensors
or standards.

Yb ¼ f v1; v2; v3;…; vrð Þ ð3Þ

where, v is the relative variable of the measurement M, r is the counter
for the relative variables, and f is the system model.

Since the relative variables may be defined by measurements
from other working sensors or unknown parameters of the model,
the benchmarks can be rewritten as Eq. (4). It is deemed that the cal-
culated values can approximate the benchmark values.

Yb ¼ f Mv1;Mv2;…;Mvr; xu1; xu2;…; xuq
� � ð4Þ

where, Mvr is the measured values of the rth relative variables, xu is
the unknown parameter in the system model, and q is the count for
the unknown parameters.

This study introduces a correction function g to compensate for the
systematic error in the measurements, as shown in Eq. (5). The correc-
tion function of one sensor is formulated with offsetting constants and
its measurement M. The specific equation is based on a characteristic
of the systematic sensor error. A single sensor can have different correc-
tion functions according to the different error characteristics over the
working conditions. When the systematic errors are identical in a spe-
cific measurement range (working stage), the measurements in this
range can be calibrated from one correction function. For the relative
measurements in Eq. (4), working sensors also have correction func-
tions, as in Eq. (6). Once the relative measurements are substituted
with the corresponding correction functions in the benchmark as in
Eq. (4), the benchmark can be finally formulated by Eq. (7). Fig. 1
shows the difference between the suggested EVIC method and the pre-
vious method [16] in terms of the benchmark formulation.

Yc ¼ g M; x1; x2;…; xkð Þ ð5Þ

Yc;vr ¼ g Mvr ; xvr1; xvr2;…; xvrkð Þ ð6Þ

Yb ¼ f Yc;v1; Yc;v2;…; Yc;vr ; xu1; xu2;…; xuq
� � ð7Þ

where, Yc is the corrected measurement for the working sensor, g is the
correction function for the working sensors, x is the offsetting constant,
k is the counter for the offsetting constants, and Yc,vr is the corrected
measurement of the rth relative sensor.

2.2. Distance function between benchmark and correction function

This study suggests a distance function of EVIC from the Residual Sum
of Squares (RSS) to derive variables of interest that will minimize the dif-
ference between the benchmark values and corrected values from the
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