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a b s t r a c t

Occupancy in buildings is one of the key factors influencing air-conditioning energy use. Occupant
presence and absence are stochastic. However, static operation schedules are widely used by facility
departments for air-conditioning systems in commercial buildings. As a result, such systems cannot
adapt to actual energy demand for offices that are not fully occupied during their operating time. This
study analyzes a seven-month period of occupancy data based on motion signals collected from six
offices with ten occupants in a commercial building, covering both private and multi-person offices.
Based on an occupancy analysis, a learning-based demand-driven control strategy is proposed for sen-
sible cooling. It predicts occupants' next presence and the presence duration of the remainder of a day by
learning their behavior in the past and current days, and then the predicted occupancy information is
employed indirectly to infer setback temperature setpoints according to rules we specified in this study.
The strategy is applied for the controls of a cooling system using passive chilled beams for sensible
cooling of office spaces. Over the period of two months both a baseline control and the proposed
demand-driven control were operated on forty-two weekdays of real-world occupancy. Using the
demand-driven control, an energy saving of 20.3% was achieved as compared to the benchmark. We
found that energy savings potential in an individual office was inversely correlated to its occupancy rate.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The latest 5th Assessment Report of the Intergovernmental
Panel on Climate Change has indicated that anthropogenic green-
house gas (GHG) emissions will continue to cause further warming
of the Earth's surface and cause long-lasting changes to the world's
climate system. The contribution of buildings to global energy use
and energy-related GHG emissions are, in fact, significant. Globally,
buildings in the residential, commercial, public and service sectors
accounted for about 35% of total final energy use and were asso-
ciated with 18.4% direct GHG emissions and indirect carbon dioxide
(CO2) emissions (e.g. electricity) in 2010. Moreover, building-
related energy demand is projected to increase by about 50% be-
tween 2010 and 2050 [1e3].

The main services consuming energy in buildings are space
heating, ventilation, and air-conditioning (HVAC), domestic hot
water, lighting, and electrical appliances. HVAC alone accounts for

the largest share. Worldwide, HVAC services account for approxi-
mately 40% of total energy consumption in buildings [4]. In
particular harsh climate, such as the tropical context of Singapore,
HVAC accounts for over 50% of the building stock's electricity
consumption [5].

Improving the energy efficiency and utility of existing and future
HVAC systems will, therefore, be an important objective for
developing future low-carbon economies. Developing a better un-
derstanding of occupants' behavior in buildings will also be an
increasingly important concern in this process. The presence and
absence of building occupants indicate whether indoor spaces are
required to be air-conditioned or not. Building HVAC systems need
to provide comfortable indoor conditions when the building spaces
they serve are occupied. On the other, they do not need to ensure
indoor conditions are comfortable with spaces unoccupied [6].
Whilst this may be intuitive, the poor anticipation of occupant
behavior has been found to increase building energy consumption
by a third [7]. Furthermore, not all occupants in buildings are suf-
ficiently aware of this or other energy saving initiatives, especially
in commercial buildings, as energy costs are not directly paid by* Corresponding author.
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them [8].
There are two features of conventional HVAC systems that have

historically made it difficult for these systems to automatically
respond to the stochastic nature of occupants' behavior in buildings
[9,10]. The first regards to the behavior of physical controllers in
existing HVAC systems, employing mostly two-position (i.e. on and
off) control or proportional, integral and derivative (PID) control to
keep indoor climates conditioned to temperature, humidity, and
CO2 setpoints [11]. The second is the use of scheduled occupancy
profiles to assign operating hours of HVAC control systems in
commercial buildings.

Demand-driven control is an emerging HVAC control strategy
that has shown promising results in coordinating real-time HVAC
use to occupant presence and vacancy, reducing energy use and
maintaining indoor thermal comfort in buildings [10,12e14]. En-
ergy savings can be achieved by decreasing the temperature dif-
ference between the air-conditioned indoor climate and the
outdoor weather or reducing the operating time of HVAC systems
[15]. In the same manner, demand-driven HVAC control strategies
decrease heating temperature setpoints or increase cooling tem-
perature setpoints when spaces are unoccupied, and they keep the
indoor spaces at comfortable levels when they are occupied.
Furthermore, a demand-driven control system can automatically
deactivate an HVAC system after the occupants have left a building
instead of waiting for scheduled shutdown times.

Central to the effective implementation of a demand-driven
HVAC control strategy is information on: 1) real-time occupancy

and 2) upcoming room occupancy [10,14]. Networks of occupant-
monitoring sensors are essential to measure occupants' behavior,
while, at the same time, algorithms with learning capabilities are
crucial for predicting future room occupancy. Prior research has
shown that HVAC systems incorporating these features have yiel-
ded significant energy savings potential.

For instance, in a residential application, Scott et al. [12]
developed a preheat heating system to anticipate to occupants'
demand. They used radio frequency identification devices (RFID)
and motion sensors to monitor real-time room occupancy status
and utilized the K-nearest neighbor (KNN) algorithm to develop an
occupancy forecast. Their control system then modified room
temperature setpoints to preheat homes according to the expected
occupancy periods. Test results showed that, on the implementa-
tion of this method, total gas consumption for heating decreased by
8%e18% over a 61-day period. Lu et al. [13] explored the energy-
saving potential of a similar application in an EnergyPlus [16]
simulation environment. They collected data from motion sensors
and door sensors installed in each room of a house to generate
room occupancy information, and they used a Hidden Markov
Model (HMM) to forecast the probability of occupants' behavior
(i.e. sleep, active, and not in the home) according to the generated
occupancy datasets. Their simulated result produced an average
energy reduction of 28% for cooling and heating over 14 days in
summer and winter.

As more and more occupants in offices adopt flexible work
hours [17], the total scheduled operating time of HVAC systems

Nomenclature

Abbreviations
GHG Greenhouse gas
CO2 Carbon dioxide
HVAC Heating, ventilation, and air-conditioning
RFID Radio frequency identification device
KNN K-nearest neighbor
HMM Hidden Markov model
M Multi-person office
P Private office
HMI Human machine interface
DOAS Dedicated outdoor air system
FCU Fan coil unit
PCB passive chilled beam
AHU Air handling unit
PID Proportional-integral-derivative
WSI Web service interface
REST API Representational state transfer, application

programming interface
M-Bus MeterBus
TD Time delay
RBC Rule-based control
BMS Building management station
DCC Demand-driven cooling control
MID The measuring instruments directive
COV Change of value
IMBPC Inteligent Model Based Predictive Control
PIBCV Pressure-independent balancing and control valve
CDD Cooling degree-days
S1 Six offices that are used to evaluate the sensible cooling

energy gap

S2 Six offices for the DCC study: P1, P2, P3, P4, M1, M2
CPU Central processing unit
RAM Random-access memory
RC Resistance-capacitance
LCD Liquid crystal display
VAV Variable-air-volume

Symbols(unit)
Tsp Temperature setpoint (�C)
Tair Air temperature (�C)
Nx The number of vacancy days in past x days
Std The size of the training dataset
Kvalue The value of K
Pthrshld The threshold of the occupancy possibility
tnp Time of next presence (minute)
tdcc The time at which starting the demand-driven cooling

control (minute)
tsd The time at which the facility department shuts down

the air-conditioning system in the case study space
(minute)

tarr lmt The time at which the cumulative probability of the
first arrivals is equal to a specified value (minute)

tdprtr lmt The time at which the cumulative probability of the
last departures is equal to a specified value (minute)

tdrtn Presence duration of the remaining day (minute)
tdrtn lmt1 The first threshold of presence duration (minute)
tdrtn lmt2 The second threshold of presence duration (minute)
Enbl Normalized daily average cooling energy use of a room

(kWh)
Ebl Measured daily average cooling energy use of a room

(kWh)
Sr The area of a room (m2)
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