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a b s t r a c t

Systematic and random errors of working sensors in building systems could significantly compromise
the system's performance and thus indoor environmental quality. An extended virtual in-situ calibration
has been suggested to solve problems regarding sensor errors and calibration. This calibration can correct
these errors for all critical working sensors in building systems without removing working sensors or
adding reference sensors as is done in a conventional calibration. This method is capable of estimating
measurands using a parameter estimation technique based on mathematical system models. Deter-
ministic and statistical methods can be used for conducting the estimation. In this study, genetic algo-
rithm (GA)-based optimization is used as a deterministic method and Bayesian Markov Chain Monte
Carlo (MCMC) is used as a statistical method to solve the calibration problem formulated by the extended
virtual in-situ calibration. A case study of a single-effect LiBr-H2O refrigeration system illustrates the
problem formulating process and compares the accuracy distributions of calibrations derived from the
two different methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy use from heating, ventilation, air conditioning, and
refrigeration systems (HVAC&R) to offset the heating and cooling
load and provide a proper indoor environment for occupants con-
stitutes a large portion of the total energy consumed in buildings
[1,2]. Although there have been many studies on the optimal con-
trol strategies of air-conditioning systems aiming at energy con-
servation [3,4], issues, including a problematic or inferior control
sequence and set points, equipment performance degradation, and
various faults that occur in HVAC&R and building energy systems,
further increase the energy use or lead to undesired indoor envi-
ronmental quality. To address the challenges in the building sector,
a comprehensive solution package, including continuous fine-
tuning of building automation systems, automated analytical
optimization and automated fault detection, diagnostics and repair,
is needed. Research has been conducted from these perspectives to
help harness the increasing energy use in buildings [5e7]. Most of
the proposed approaches will be effective only if the information
and data obtained from sensors are trustable and accurate [5]. For

example, automated fault detection and diagnostics algorithms for
devices and system may not even work if the key measurements
from the sensors are wrong. With respect to smart buildings, the
sensor's role is fundamentally and significantly important in
ensuring and enhancing the building performance.

A virtual in-situ sensor calibration (VIC) [8] method has been
recently studied in order to solve the practical problems of a con-
ventional sensor calibration in building energy systems; the con-
ventional calibration process and its limitations in building systems
were described in Ref. [8]. Specifically, the problems addressed are:
(1) time and monetary cost; (2) disruption of normal operation; (3)
difficulty in accessing various sensors embedded in equipment;
and (4) the large quantity of sensors [8,9]. Meanwhile, because the
working environments of a sensor is generally different from the
controlled condition for a physical calibration, the systematic errors
associated with the system working conditions cannot be solved
even with a perfect conventional calibration. The proposed in-situ
calibration method is able to approximate the measurement
values and establish benchmark values for the calibration. This is
done either statistically or by using system models without
removing the working sensor or adding reference sensors, as in a
conventional calibration. Since the new method is conducted in-
situ, it is capable of handling the systematic errors (offset) associ-
ated with changing working conditions, as well as the random* Corresponding author.
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errors (noise) due to sensor degradation.
We further extended the novel in-situ sensor calibration

method by casting it as a parameter estimation problem in order to
calibrate all working sensors simultaneously in a circumstance
where we are unable to certify which sensors are malfunctioning.
This extension is beyond the scope of the existing VIC. The
extended virtual in-situ calibration (EVIC) introduces reliable sys-
tem output variables and multiple sets of measurements to esti-
mate true measurements [9,10]. Deterministic and statistical
approaches can be applied to solve the formulated calibration
problem created by EVIC. For a model calibration in the building
sector, the deterministic approach uses an optimization process to
derive optimal values of unknown parameters by minimizing the
objective function consisting of differences between measured and
calculated values [11e13]. The statistical approach (Bayesian cali-
bration) calculates the probability density functions of the esti-
mated unknown parameters, reducing the difference between
simulated and observed data by considering the inherently sto-
chastic nature of input variables [14e17].

This study uses the two methods for comparing their results in
EVIC: (1) GA-based optimization as the deterministic approach;
and (2) Bayesian calibration as the statistical approach. With the
understanding of different ways to suggest calibrated results in two
methods, we focus more on an effect of the difference in prior in-
formation of two methods on their calibration results. The deter-
ministic method uses lower and upper bounds of unknown
variables for the prior information while probability density func-
tions are used for prior distributions in the statistical calibration.
These priors may be collected by measured data from working
sensors. Of note, the measurements can illustrate possible random
errors from standard deviations, but are unable to reveal systematic
errors. This is because the systematic errors cannot be detected
without ways to discover whether values are accurate. Neverthe-
less, there is no alternative but to use the measurements for prior
information before a calibration. In such cases, we contemplate the
pros and cons of each method intuitively. The disadvantage of GA is
that it requires wider ranges than ranges established from
measured data in order to correct the large systematic errors
occurring outside the ranges of measurements, because the optimal
variables are estimated within the given ranges. However, once the
extended ranges are defined properly, GA is unaffected by the
relationship between systematic and random errors because the
ranges have an identical probability regardless of standard de-
viations of random errors. On the other hand, Bayesian calibration
does not need any extension for prior information because it is able
to explore and derive the accurate values even at a low probability
of the prior distribution. In a proportional relationship between the
two types of errors, the prior distributions can be more informative
and thus function as related equations that help the calibration
problem to be more constrained for a determined condition. But,
uninformative prior distributions can adversely affect the accuracy
of calibration results.

The next question of this study is how effectively calibration
results are improved by the use of multiple sets of measurements
within the two methods. If it is very effective, are the accuracy
distributions according to different numbers of sets similar or dis-
similar in different types of working sensors such as temperatures
and mass flow rates? Such an analysis helps to determine the
sufficient number of measurement sets that can satisfy each
reference value for accuracy by considering the different sensor
types. Otherwise, how do we solve the calibration problem
appropriately when the accuracy is not sufficiently improved by the
multiple sets? This study has proposed a two-step calibration
approach for EVIC to handle this issue.

We present the procedure of problem formulation as well as the

calibration results for a single-effect LiBr-H2O refrigeration system.
The results from deterministic and statistical methods are
compared with the pre-defined true values (answers) from a for-
ward simulation method [18]. Then, accuracy distributions of the
calibrated results with a different number of measurement sets are
identified in the two methods in order to compare them quanti-
tatively and the reasonable number of measurement sets in
deriving the accurate values using two algorithms is discussed.
Finally, a more proper method for the suggested calibration prob-
lem, if possible, is recommended.

2. Extended virtual in-situ calibration in building systems

2.1. EVIC problem formulation

The EVIC method proposed by Yoon and Yu [9] can calibrate
multiple working sensors simultaneously. The EVIC problem has a
distance function describing the squared sum of all working sensor
errors; it represents the difference between correction functions
and benchmarks for working sensors in a system, as shown in Eq.
(1). It should be minimized through the suggested calibration
process. Each correction function, as in Eq. (2), can be formulated by
offsetting constants and/or correction coefficients along with a
measurement, which will compensate for the systematic errors for
a specific sensor over all working stages. The benchmarks, which
are modeled by the relative variables and unknown parameters in a
systemmodel, are considered as reference values for calibration, as
in Eq. (3). Since the relative variables may be determined by un-
certain measurements from other working sensors, they are also
defined by the corresponding correction functions in the bench-
mark function. Thus, the offsetting constants and correction co-
efficients of the formulated correction function, and the unknown
parameters of the benchmark, are selected as variables of interest
in this calibration problem. These variables can be estimated by
minimizing the defined distance function through the EVIC process.

DðxÞ ¼
XN
i¼1

ðYbi � YciÞ2 (1)

Yc ¼ gðM; x1; x2;…; xkÞ (2)

Yb ¼ f
�
Yc;v1;Yc;v2;…; Yc;vr; xu1; xu2;…; xuq

�
(3)

where, D is the distance function regarding the measurement error,
x represents the variables of the EVIC problem, Yb is the corre-
sponding benchmark, Yc is the corrected measurement, i is the
counter for working sensors, N is the number of benchmarks in
distance function, g is the correction function, M is the measure-
ment from the working sensor, k is the counter for the variables, f is
the systemmodel, v is the relative variable of themeasurementM, r
is the counter for the relative variables, xu is the unknown
parameter in the systemmodel, and q is the count for the unknown
parameters.

This calibration constructed by the distance function as in Eq. (1)
is naturally an under-determined problem; many different combi-
nations of the variables can be derived from the calibration even
though theymay differ from their true values. In order to obtain the
accurate variables, the under-determined calibration problem
should be constrained by decreasing the number of unknown
conditions and/or increasing the number of related equations
within the calibration system. Using multiple sets of steady-state
measurements (S) from various timestamps may turn the calibra-
tion problem into a determined one through adding new relative
equations. To this end, a formulation of the distance function is
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