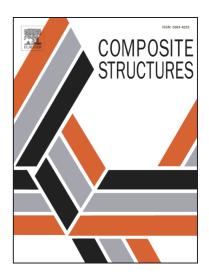
Accepted Manuscript

Bond Interface Design for Single Lap Joints using Polymeric Additive Manufacturing

R. Garcia, P. Prabhakar


PII: S0263-8223(16)32784-2

DOI: http://dx.doi.org/10.1016/j.compstruct.2017.05.060

Reference: COST 8569

To appear in: Composite Structures

Received Date: 6 December 2016 Revised Date: 18 March 2017 Accepted Date: 23 May 2017

Please cite this article as: Garcia, R., Prabhakar, P., Bond Interface Design for Single Lap Joints using Polymeric Additive Manufacturing, *Composite Structures* (2017), doi: http://dx.doi.org/10.1016/j.compstruct.2017.05.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Bond Interface Design for Single Lap Joints using Polymeric Additive Manufacturing

R. Garcia

Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA

P. Prabhakar*

Department of Civil & Env. Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

In this paper, the use of polymer additive manufacturing technology, also called 3D printing, for imparting texture to bond regions in adhesively bonded joints is explored. An improvement in the apparent shear strength values of adhesively bonded single lap joints is achieved by fusing structural reinforcements to the adherents through fused deposition modeling (FDM) additive technique. Towards that, computational models were first developed to simulate stress distribution along the overlap region of single lap shear joints, and four models that performed the best were chosen for physical testing. Pure adhesive (PA) joints were manufactured first, followed by the fabrication of 3Dprinted adhesive (3D-PA) joints. Peak loads, shear stresses, and failure types were compared between these models. PA joints failed mainly adhesively, resulting in low peak loads and shear strength, whereas, 3D-PA joints registered higher average peak loads and shear strengths (increased by up to $\approx 832 \%$) with predominantly cohesive failure. 3D printed reinforcements appear to have imparted higher shear resistance against failure at the bond regions. Overall, using a combined computational and experimental approach, it is established that the 3D printed reinforcements have the potential to drastically improve the apparent shear strength of adhesively bonded single

^{*}Corresponding author. 2210 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706. Email: pprabhakar4@wisc.edu; Tel.: (608) 265-7834

Download English Version:

https://daneshyari.com/en/article/4911745

Download Persian Version:

https://daneshyari.com/article/4911745

<u>Daneshyari.com</u>