Accepted Manuscript

Low velocity impact properties of flax composites

F. Bensadoun, D. Depuydt, J. Baets, I Verpoest, A.W. Van Vuure


PII: S0263-8223(16)30489-5

DOI: http://dx.doi.org/10.1016/j.compstruct.2017.05.005

Reference: COST 8514

To appear in: Composite Structures

Received Date: 4 May 2016 Revised Date: 30 August 2016

Please cite this article as: Bensadoun, F., Depuydt, D., Baets, J., Verpoest, I., Van Vuure, A.W., Low velocity impact properties of flax composites, *Composite Structures* (2017), doi: http://dx.doi.org/10.1016/j.compstruct. 2017.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

LOW VELOCITY IMPACT PROPERTIES OF FLAX COMPOSITES

F. Bensadoun¹, D. Depuydt¹, J. Baets¹, I Verpoest¹, A.W. Van Vuure¹

¹ KU Leuven - Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, 3001 Heverlee,

Belgium

*Corresponding author: ignaas.verpoest@kuleuven.be

ABSTRACT

The investigation of the impact performance of flax-based composites is the key in order to understand which

material parameters determine the safety and longevity of flax composite products. In this study, the effect of

fibre architectures and matrix type on the absorbed energy after perforation, on the damage resistance as well as

on the residual properties after impact were investigated. The matrix choice (epoxy vs MAPP) was found to

greatly influence the absorbed energy as well as the damage area. The absorbed energy at perforation for the

flax-MAPP composite was more than 50% higher compared to the flax-epoxy composites. Overall, the type of

architecture has been found to have a limited effect on the absorbed energy at perforation. Furthermore, the use

of a ductile thermoplastic matrix results in a decreased impact damage area by 38% to 59% with little

delamination growth. The flax-epoxy composites experienced a stronger decrease in properties after impact,

however these quasi-static properties are still much higher than the flax-MAPP composites.

Keywords: fibre architecture, matrix, flax fibres, damaged area, absorbed energy

INTRODUCTION

Impact damage, especially at low velocity, is commonly recognised as one of the most severe threats to

composite structures. Therefore, a good understanding of the impact behaviour of composite structures is crucial

for the design process. Impact properties cover three aspects, and can be measured in three ways: energy

absorption after perforation impact tests, damage resistance (damage area after non-perforation impact) and

damage tolerance (residual properties after non-perforation impact) [1]. Impact properties are influenced by

many factors such as: matrix type, matrix ductility, fibre type, fibre architecture, fibre orientations, fibre-matrix

interface quality, laminate thickness and stacking sequence as well as the interlaminar fracture toughness.

Physical factors such as the panel geometry and its dimensions, constraint conditions and the impactor geometry

should also be considered [2].

1.1 Low velocity impact damage

Download English Version:

https://daneshyari.com/en/article/4911779

Download Persian Version:

https://daneshyari.com/article/4911779

<u>Daneshyari.com</u>