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a b s t r a c t

In many situations, it is important to recognize the bending performance of a newly received composite
beam. With this in mind, this paper estimates unknown rigidity function of a static Euler–Bernoulli com-
posite beam. To solve the inverse coefficient problem with the help of boundary data, a sequence of
boundary functions are derived, which satisfy the homogeneous boundary conditions, and are at least
the fourth-order polynomials. All boundary functions and zero element constitute a linear space. An ener-
getic boundary functional is introduced in the linear space, of which the energy is preserved for each
energetic boundary function. The linear system used to recover the unknown rigidity function of compos-
ite beam with energetic boundary functions as bases is derived and the iterative algorithm is developed,
which is convergent very fast. The accuracy and robustness of boundary functional method (BFM) are
confirmed by comparing the estimated results with exact rigidity functions of composite beams.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In structural engineering, aerospace vehicles and building com-
ponents, beams are the most popular basic elements primarily to
resist bending moment [1,2]. The forced vibration problems of
beams have been many applications in building structure, mechan-
ical cutting tool and aircraft engineering [3,4]. Sometimes one may
encounter the problem that when the rigidity function of the beam
is not yet known one wants to seek the solution of the beam, which
results to an inverse coefficient problem of beam. The inverse coef-
ficient problems of beams have been studied in many researches
[5–9].

In recent decades, the composite beams with variable cross-
section and interface have received much attention for they are
needed to achieve a superior structural performance to fit the
stress distribution better. Composite laminates are greatly being
applied in many fields of engineering for their excellent properties
of lightweight and fatigue resistance, and high strength and stiff-
ness [10]. For the same reason that composite beams play as light-
weight load carrying structures in varying applications, the most
significant topic emerging from composite structural design is

the improvement of rigidity performance in vibration analysis.
Hajianmaleki and Qatu [11] have made a review focusing on the
researches in last two decades on the vibration analysis of compos-
ite beams. To enhance the bending performance, there presented
non-uniform constituent cross-section properties with interface
between layered beams. One of the configurations of composite
beam is the widely used scarf joint technique for fabricating com-
posite structures [12,13]. Some related issues about the stability
and behavior analysis of composite beams and laminated box
beams can refer [14–21]. In all these situations, it is important to
recognize the bending rigidity performance of a newly received
composite beam by identifying its rigidity function [22].

For the inverse coefficient problem of static Euler–Bernoulli
beam the measurement error of data may lead to a large discrep-
ancy from the true rigidity distribution. In the present paper, the
new method is based on a new idea of boundary functions for each
beam under different boundary conditions. The boundary func-
tions method is first developed by Liu and Li [9] to find the natural
frequencies of non-uniform composite beam, where the Rayleigh
quotient is maximized in terms of boundary functions. The present
identification technique would be much data saving and time sav-
ing in the solution of the inverse coefficient problem of composite
beam.

The remainder of this paper is arranged as follows. A new con-
cept of energy functional in terms of boundary functions is intro-
duced in Section 2, which constitute a linear space of all
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polynomial functions with at least fourth-order, and satisfy the
homogeneous boundary conditions. Section 3 derives the iterative
algorithm to recover the unknown rigidity function and several
examples of simply supported beam are given in Section 4. Extend-
ing the new method and iterative algorithm for simply supported
beam, an example of clamped-hinged beam is given in Section 5.
A piecewise formulation of the boundary functional method is
derived in Section 6 for identifying more complex rigidity func-
tions of composite beams. Finally, the conclusions are drawn in
Section 7.

2. Energetic functional of boundary functions

An inverse coefficient problem to find the unknown rigidity
function RðxÞ of a static Euler–Bernoulli composite beam is consid-
ered in this paper. The static beam with simply supported bound-
ary conditions is employed as the first demonstrative example, of
which one needs to find the static displacement distribution yðxÞ
as well as the rigidity function RðxÞ that simultaneously satisfy

½RðxÞy00ðxÞ�00 ¼ FðxÞ; 0 < x < ‘; ð1Þ
yð0Þ ¼ 0; yð‘Þ ¼ 0; y00ð0Þ ¼ 0; y00ð‘Þ ¼ 0; ð2Þ
where the prime denotes the differential with respect to x; FðxÞ is a
given external loading, RðxÞ > 0 is an unknown rigidity function to
be recovered, and ‘ is the length of beam.

Because the above problem has an unknown rigidity function
RðxÞ, it cannot be solved directly to find yðxÞ. In order to recover
RðxÞ, the over-specified data are given by

Rð0Þ ¼ R0; Rð‘Þ ¼ R‘; R0ð0Þ ¼ R0
0; R0ð‘Þ ¼ R0

‘; ð3Þ
which may be polluted by noise with

R0 ¼ R0 þ sr; R‘ ¼ R‘ þ sr;

R0
0 ¼ R0

0 þ sr; R0
‘ ¼ R0

‘ þ sr; ð4Þ
where r is a random number and s is the intensity of noise.

By using Eqs. (1)–(3) to recover the unknown rigidity function
RðxÞ is a very difficult task, because the system (1)–(3) is seriously
under-determined, and the resulting inverse coefficient problem is
severely ill-posed. The new method will base on the new idea of
boundary functions for each beam under different boundary condi-
tions. Before that some basic mathematical ingredients are intro-
duced in this section.

By multiplying both the sides of Eq. (1) by yðxÞ, yields
½RðxÞy00ðxÞ�00yðxÞ � FðxÞyðxÞ ¼ 0: ð5Þ

Integrating it from x ¼ 0 to x ¼ ‘ and the first term through inte-
gration by parts twice one can derive
Z ‘

0
RðxÞy00ðxÞ2dx�

Z ‘

0
FðxÞyðxÞdx ¼ 0; ð6Þ

where the boundary conditions in Eq. (2) were used. If there exist
exact solutions yðxÞ and RðxÞ of Eq. (5), they must satisfy the above
equation. The resulting equation is an energy equation and the
author will use this energy functional as a mathematical tool to
identify RðxÞ.

Really, one cannot exactly know yðxÞ in Eq. (6), because RðxÞ is
an unknown function to be determined. However, one can set up
some functions to approximate yðxÞ. First, the boundary function,
which automatically satisfies the boundary conditions in Eq. (2),
can be derived [9]:

B1ðxÞ ¼ x4 � 2‘x3 þ ‘3x; j ¼ 1;

BjðxÞ ¼ xjþ3 � 2jþ 3
jþ 1

‘xjþ2 þ jþ 2
jþ 1

‘2xjþ1; j P 2: ð7Þ

They are at least fourth-order polynomial functions, satisfying
the following homogeneous boundary conditions for the simply
supported beam:

Bjð0Þ ¼ 0; Bjð‘Þ ¼ 0; B00
j ð0Þ ¼ 0; B00

j ð‘Þ ¼ 0; j P 1: ð8Þ
A polynomial function of x is said to be a boundary function if it

satisfies the homogeneous boundary conditions in Eq. (8). From Eq.
(8) it is obvious that when BjðxÞ is a boundary function,
bBjðxÞ; b 2 R is also a boundary function, and when BjðxÞ and
BkðxÞ are boundary functions, BjðxÞ þ BkðxÞ is also a boundary func-
tion. The boundary functions are closure under a scalar multiplica-
tion and addition. Therefore, the set of

fBjðxÞg; j P 1 ð9Þ
and the zero element constitute a linear space of boundary func-
tions, denoted by B.

The following result is important to help us identify the
unknown rigidity function RðxÞ of composite beam.

Theorem 1. In the linear space B there exist homogeneous linear
elements:

EjðxÞ ¼ cjBjðxÞ þ Bjþ1ðxÞ; j P 1; j not summed; ð10Þ
such that RðxÞ is a solution of the following functional equation in terms
of EjðxÞ:Z ‘

0
RðxÞE00

j ðxÞ2dx�
Z ‘

0
FðxÞEjðxÞdx ¼ 0; ð11Þ

where

a2 ¼
Z ‘

0
RðxÞB00

j ðxÞ2dx;

a1 ¼
Z ‘

0
½2RðxÞB00

jþ1ðxÞB00
j ðxÞ � FðxÞBjðxÞ�dx;

a0 ¼
Z ‘

0
½RðxÞB00

jþ1ðxÞ2 � FðxÞBjþ1ðxÞ�dx; ð12Þ

cj ¼
�a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0a2

q
2a2

: ð13Þ

Proof. Because BjðxÞ;Bjþ1ðxÞ 2 B are elements of the linear space B,
the linear combination in Eq. (10) renders EjðxÞ 2 B also an element
of the linear space B, which satisfies the homogeneous boundary
conditions for the simply supported beam:

Ejð0Þ ¼ 0; Ejð‘Þ ¼ 0; E00
j ð0Þ ¼ 0; E00

j ð‘Þ ¼ 0; ð14Þ
due to Eq. (8).

Because EjðxÞ already satisfies the boundary conditions in Eq.
(14) as Eq. (2) for yðxÞ, by turning the attention to the energy
identity (6) one can approximate yðxÞ by EjðxÞ and derive Eq. (11),
which is an energetic boundary functional of EjðxÞ defined in the
linear space.

Inserting Eq. (10) for EjðxÞ and

E00
j ðxÞ ¼ cjB

00
j ðxÞ þ B00

jþ1ðxÞ ð15Þ
for E00

j ðxÞ into Eq. (11) one can derive a quadratic equation to deter-
mine the multiplier cj:

a2c2j þ a1cj þ a0 ¼ 0; ð16Þ
where the coefficients a0; a1; a2 were defined in Eq. (12). Then the
solution of cj is derived in Eq. (13). This ends the proof of this the-
orem. h
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