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a b s t r a c t

The aim of this paper is to develop a robust layer-wise theory for structural analysis of curved glass and
photovoltaic panels. By the analogy to the existing theories of plates, governing equations for doubly
curved layers including kinematic relations, equilibrium conditions and constitutive equations are intro-
duced. Applying assumptions of shear rigidity of skin layers and moments-free core layer as well as
approximations of thin shallow shell, a reduced form of governing differential equations is proposed.
Compared to the classical theories of shells the derived system includes an additional second order dif-
ferential equation. As a result, additional boundary conditions should be satisfied for any edge of the
shell. The importance of these extensions is demonstrated for long cylindrical panel with for two exam-
ples of simple supports: one with free edges, where relative in-plane displacements of skins are allowed,
and one with framed edges, where cross-section rotations of all layers are assumed the same. For both
cases closed-form analytical solutions related to a shell strip approximation are presented.
Displacement bounds in monolithic and layered cases are derived, and the dependence of deformation
and stress characteristics on the radius of curvature and types of supports are illustrated.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated shells with stiff skin layers and a relatively thin and
soft core layer are integrated in many engineering structures. For
example, laminated glass shells with glass skin layers and a core
layer from Polyvinyl Butyral (PVB) and are widely used in civil
engineering and automotive industry [1–5]. Crystalline or thin film
photovoltaic modules are composed from front glass layer, solar
cell layer embedded in a polymeric encapsulant and back glass
or polymeric layer [6–8]. Lightweight photovoltaic modules
replace front and/or back glasses by polymer or polymer composite
layers [9]. In the last years curved photovoltaic modules are
designed for the integrity in shell-type structures. Fig. 1 shows
two examples from automotive industry and civil engineering.

One feature of laminated glass shells or laminates used in pho-
tovoltaic industry is a relatively high contrast of material proper-
ties for core and skin layers. As an example consider the ratio
n ¼ lC=lS with lC being the shear modulus of the core layer and
lS being the shear modulus of the skin layer. For laminated glass

and photovoltaic structures n ranges between 10�5 and 10�2

[6,10,11]. For comparison, in classical sandwich structures, n is in
the range of 10�2 and 10�1. Furthermore, in glass and photovoltaic
laminates the face layers are relatively thick and the core layer is
thin, while classical sandwiches are composed from thin skins
and a relatively thick core.

Laminated glass panels and solar modules are subjected to
mechanical and thermal loadings, such as snow, wind, impact
loads and daily or seasonal temperature changes. For design it is
beneficial to analyze the load transfer between the layers, to estab-
lish strain and stress states in plies and to predict deformation and
strength of the laminate under given external loadings.

A robust approach for the structural analysis is the first order
shear deformation theory (FSDT) of shells and plates [12–15]. Here
the assumption is made that any normal to the reference mid-
surface of the shell behaves like a rigid line during the deformation.
The rotation degrees of freedom (DOFs) of the lines are indepen-
dent from the displacements of the mid-surface, in contrast to
the Kirchhoff–Love theory, where the lines are assumed normal
to the deformed mid-surface and rotations are related to displace-
ments. Closed-form solutions or approximate analytical solutions
for beams plates and shells according to the FSDT are presented
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in [12,15–20], among others. Furthermore shell elements devel-
oped with FSDT are available in commercial finite element codes
for the analysis of layered structures [21]. The key step in applying
FSDT is to establish material properties of the laminate, in particu-
lar the transverse shear stiffness. Although closed-form relation-
ships are developed to find effective elastic stiffness of a
laminate from the properties of layers, e.g. [22], numerical tech-
niques are required to estimate the effective transverse shear
deformation in the inelastic range, [23–25]. Furthermore, for lam-
inates with extreme differences in the stiffness of layers the FSDT
fails to predict the deformation properties of the laminate accu-
rately, as shown in [6,9] for beams and in [26–29] for plates.

Laminated glass shells can also be analyzed by the use of three-
dimensional theory of elasticity and applying the solid finite ele-
ments for the numerical solution. However, due to extreme differ-
ences in material properties of plies and the relatively low
thickness of the core, considerable numerical effort is required to
obtain the results with a desired accuracy [6,26].

Continuum shell elements can also be applied for the analysis of
laminated glass units and photovoltaic modules. The finite element
code Abaqus, for example, offers continuum shell elements, which
possess displacement DOFs and use three-dimensional constitutive
equations [21]. They include the linear triangular and quadrilateral
elements with 18 and 24 DOFs, respectively. However, at least
three elements in the thickness direction are required to analyze
a three-layer laminate. Therefore the total number of DOFs
required for analysis of an entire laminate can increase
considerably.

Recently higher order shell theories were developed and
applied to the analysis of laminated structures. A widely used
approach is the zig-zag theory, where the displacements are
approximated by piecewise functions with respect to the thickness
coordinate such that the compatibility between the layers is ful-
filled. Applying these approximations the governing equations of
the three-dimensional elasticity theory are reduced to two-
dimensional shell equations by the use of variational methods or
asymptotic techniques [30–35].

Within the layer-wise theory (LWT), balance equations and con-
stitutive models are derived for each ply independently. With con-
stitutive assumptions for interaction forces and compatibility

conditions between the layers a model for the laminate can be
developed. One advantage of LWT is that the load transfer between
the layers can be analyzed explicitly since forces of interactions are
directly accessible, while within zig-zag-type approximations
Lagrange multipliers appear to be reactions to the constraints. Fur-
thermore, within LWT additional assumptions can be made with
regard to kinematics and/or dynamics of individual layers leading
to robust governing equations. For example, for curved laminated
beams with core layer from soft polymers the assumption is made
that glass skin layers deform according to the Bernoulli–Euler
beam theory, i.e. they are shear-rigid. The soft core layer carries
out the transverse shear stress only, while the bending moment
and the normal force are negligible [1,3]. Recently, LWTs have been
developed for laminated plates with soft and thin core layer
[36,37]. The deformation of skin layers is described by the Kirch-
hoff plate theory, while the core is modeled as the shear layer. In
[26,37] closed-form analytical solutions are presented for rectan-
gular plates with various boundary conditions. In [10,26] a finite
element is developed and utilized inside Abaqus for the analysis
of laminates based on LWT. The element possesses nine DOFs:
two mean in-plane displacements, two relative in-plane displace-
ments, the deflection, two mean cross-section rotations, and two
relative cross-section rotations.

More advanced theories may be required for shells with com-
plex internal structure such as pantographic lattices or fiber sheets
[38–40]. In addition multi-scale approaches are useful for photo-
voltaic laminates, where the global structural analysis is performed
by means of LWT, while detailed analysis of constituents, like solar
cells and interconnectors, is performed within a representative vol-
ume by the use of three-dimensional theory [8,10].

Despite the fact that curved laminate panels can be analyzed by
many different approaches, equations of LWT provide a mostly effi-
cient tool in a design stage of laminated glass and photovoltaic
structures, since closed form analytical solutions for stress and
deformation states can be derived and influence of many parame-
ters like layer thickness, material properties and curvature can be
analyzed explicitly. Although LWTs for curved beams and plates
are widely discussed in the literature, robust equations for lami-
nated shells with soft core layer are not available, to best of our
knowledge.

Fig. 1. Examples of curved photovoltaic modules. (a) Photovoltaic module on the roof of a car, (b) Photovoltaic integrated roof shading system, (c) Layered structure of
crystalline photovoltaic module, (d) Layered structure of thin film photovoltaic module.
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