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a b s t r a c t

Various solution techniques have been developed in the last decades for accurate prediction of the
dynamic responses of a laminated composite structure. The spectral element method (SEM) is well
known as an exact solution method that provides extremely accurate dynamic responses even in the
high-frequency region. In this study, we develop a spectral element model for a rectangular finite com-
posite plate element. The present spectral element model is developed by modifying the boundary split-
ting method introduced in the previous studies of the authors. As a result, the four corner nodes of the
rectangular finite composite plate element, which were inactive (fixed) in the previous studies, become
active. Thus, the present spectral element model can be used as a generic type of finite element, which
can be applied to any laminated composite plates with arbitrary boundary conditions. The accuracy
and efficiency of the present spectral element model are evaluated by comparing its results with exact
solutions and solutions using the commercial finite element analysis package, ANSYS. In addition, the
vibration and wave characteristics are numerically investigated by varying the lay-ups of some examples
of laminated composite plates with various geometries and boundary conditions.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The structural properties of a laminated composite plate (sim-
ply, composite plate) can be controlled to satisfy the design
requirements by modifying the fiber angles and the number of
lamina. As composite plates with high specific strength and speci-
fic stiffness have been widely applied to many engineering fields
including mechanical, aerospace, and civil engineering, it is very
important to accurately predict the vibration characteristics of a
composite plate during the design phase [1]. However, it is well
known that exact vibration responses can be obtained only for very
specific types of plates such as Levy-type plates, and various vibra-
tion analysis techniques that have been developed in the last dec-
ades can only obtain approximate solutions [2,3].

The finite element method (FEM) is one of the powerful compu-
tational methods that have been widely used to perform vibration
analyses of complex structures. The accuracy of the FEM is closely
related to the size of the finite elements used in the analysis. To
obtain reliable FEM solutions, particularly in the high-frequency
region, a structure must be discretized into many smaller finite ele-
ments, which will result in a significant increase of computational

cost. Therefore, the frequency-domain spectral element method
(SEM) can be considered as an alternative to the FEM.

Compared to the FEM, the SEM is known to provide exact solu-
tions very efficiently by representing a uniform structure element
as a single finite element regardless of its dimension [4]. This is
true because the exact dynamic stiffness matrix (or spectral ele-
ment matrix) formulated from the free wave solutions satisfying
the governing equations in the frequency domain is used as the
stiffness matrix in the analysis. Despite the outstanding features
of the SEM, it has been applied mostly to one-dimensional struc-
tures [4,5].

There are very few SEM applications for two-dimensional (2D)
structures. Langley [6], Berçin [7], and Leung and Zhou [8] pre-
sented the dynamic stiffness methods for the vibration analysis
of the Levy-type isotropic thin plate, orthotropic thin plate, and
laminated thick plate, respectively. Lee and Lee [9] applied the
SEM to the Levy-type isotropic thin plate subjected to distributed
dynamic loads. Hajheidari and Mirdamadi [10,11] applied the
SEM to the vibration analysis of Levy-type symmetric and non-
symmetric cross-ply composite plates. Orrenius [12] applied a
semi-analytical FEM to isotropic, orthotropic, and rip-stiffened
semi-infinite plates. Chakraborty and Gopalakrishnan [13,14] pre-
sented spectral element models for semi-bounded and semi-
infinite plate elements. Casimir et al. [15] presented a dynamic
stiffness matrix for isotropic plates with free edge boundary condi-
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tions. From the aforementioned literature, we find that the SEM
applications to 2D structures have been limited to plates with very
specific geometries and boundary conditions.

Birgersson et al. [16] and Mitra and Gopalakrishnan [17] pre-
sented spectral element models for rectangular plates by using a
spectral super element method (SSEM). However their spectral ele-
ment models can be assembled only in one plate direction (e.g., the
x-direction). Park and his colleagues [18–20] developed spectral
element models for membranes and isotropic and orthotropic
composite plates by using a combination of the boundary splitting
method [21] and SSEM [16]. Their spectral element models can be
assembled in two plate directions (i.e., the x- and y-directions).
However, as the four corner nodes of the spectral element models
are inactive (fixed), their applications were limited to very specific
types of plates. Recently, Park and Lee [22] developed a spectral
element model for isotropic rectangular plates by modifying the
boundary splitting method used in their previous study [19], in
order to make the inactive four corner nodes active. Their spectral
element model can be assembled in two plate directions without
any limitation. Thus, it can be considered as a generic type of spec-
tral element model that can be applied to any isotropic plate with
arbitrary boundary conditions. However, to the authors’ best
knowledge, such a generic type of spectral element model has
not been reported in the literature for composite plates with arbi-
trary boundary conditions.

Thus, the objective of this study is to develop a generic type of
spectral element model that can be applied to any composite plates
with arbitrary boundary conditions. The accuracy and performance
of the newly developed spectral element model are then verified by
comparing its results with those of exact solutions and solutions
using the commercial finite element analysis package, ANSYS [23].

2. Governing differential equations of motion for a composite
plate

2.1. Governing differential equations of motion

Consider a rectangular finite composite plate element made of
m layers (or lamina) The xy-plane coincides with the mid-plane
of the composite plate and the z-coordinate is normal to the
mid-plane. The dimensions of the composite plate in the x- and
y-directions are Lx and Ly, respectively, and the mass per unit area
of the composite plate is q. The components of displacement at a
point, occurring in the x, y, and z-directions are denoted by u(x,y,
t), v(x,y,t), and w(x,y,t), respectively. For the finite composite plate
element subjected to the transverse force f(x,y,t), the governing dif-
ferential equations of motion are given by [1]:
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where Aij are the extensional stiffnesses, Bij are the bending-
extensional coupling stiffnesses, and Dij are the bending stiffnesses,
which are defined in [1].

2.2. Governing differential equations in the frequency domain

The governing differential equations of motion, Eq. (1), can be
transformed into the frequency domain by using the fast Fourier
transform (FFT) theory. The displacement fields and external force
can be represented in the spectral forms as follows [5]:

fuðx; y; tÞ; vðx; y; tÞ;wðx; y; tÞ; f ðx; y; tÞg

¼ 1
N

XN�1

n¼0

f�unðx; yÞ; �vnðx; yÞ; �wnðx; yÞ;�f nðx; yÞgeixnt ð2Þ

where N is the number of samples for the FFT-based spectral anal-
ysis, i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit, and xn = 2pn/T (n = 0,1,2, . . .,N)

are the discrete frequencies up to the Nyquist frequency. The over-
barred quantities (i.e., �unðx; yÞ; �vnðx; yÞ; �wnðx; yÞ; and �f nðx; yÞ) with
subscripts n represent the spectral or Fourier components of the
corresponding time domain quantities (i.e., u(x,y,t), v(x,y,t), w(x,y,
t), and f(x,y,t)). For the sake of brevity, the over-bars and subscripts,
n, if not necessary, will be omitted in the following derivations.

By substituting Eq. (2) into Eq. (1), the governing differential
equations of motion can be transformed into the frequency domain
as follows:
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3. Weak form of governing differential equations

In this study, we formulate the spectral elementmodel for a finite
composite plate element by using a variational method [5]. To that
end, the weak form of the governing differential equations in the fre-
quencydomaingivenbyEq. (3) canbeobtained in the following form:
RR
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where Vx1(y), Vx2(y), Vy1(x), and Vy2(x) are the external transverse
shear forces acting on the four edges of a finite composite plate ele-
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