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a b s t r a c t

This paper develops effective numerical models to study the wave dynamics of highly nonlinear tenseg-
rity metamaterials. Recent studies have highlighted the geometrically nonlinear response of structural
lattices based on tensegrity prisms, which may gradually change their elastic response from stiffening
to softening through the modification of mechanical, geometrical, and prestress variables. We here study
the nonlinear dynamics of columns of tensegrity prisms subject to impulsive compressive loading. An
effective nonlinear rigid body dynamics is employed to simulate the dynamic response of such metama-
terials. We illustrate how to pass from the matrix to the vector form of the equations of motions, on
accounting for a rigid response of the compressive members (bars). Numerical simulations show that
the wave dynamics of the examined metamaterials supports compression solitary pulses with profile
dependent on the elastic properties of the tensile members (strings), the given impact velocity, and
the applied prestress. We conclude that tensegrity columns can be effectively used as tunable acoustic
lenses, which are able to generate acoustic solitary waves with adjustable profile in a host medium.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of strongly nonlinear metamaterials is receiving
increasing attention by the scientific community, (refer, e.g. to
review papers [1,2] and references therein). Several studies have
shown that elastically hardening discrete systems support com-
pressive solitary waves and the unusual reflection of waves on
material interfaces [3–8], while elastically softening systems sup-
port the propagation of rarefaction solitary waves under initially
compressive impact loading [9,6]. Solitary wave dynamics has
been proven to be useful for the construction of a variety of novel
acoustic devices. These include: acoustic band gap materials; shock
protector devices; acoustic lenses; and energy trapping containers,
to name some examples (refer, e.g., to [10] and references therein).

It has been found that structural lattices based on tensegrity
units (e.g., tensegrity prisms) exhibit a tunable geometrically non-
linear response, which may gradually change from stiffening to
softening through the modification of mechanical, geometrical,
and prestress variables [11–13,9]. Tensegrity structures are pre-
stressable truss structures, obtained by connecting compressive
members (bars or struts) through the use of pre-stretched tensile
elements (cables or strings). It is known that tensegrity concepts

diffusely appear in nature, such as, e.g., in cells, the structure of
the spider silk, and the system of bones and tendons in animals
and humans [14]. Attention is increasingly being given to the
development of efficient analytical and numerical methods for
exploiting tensegrity concepts in engineering design (refer to
[14] and references therein). Also the form-finding of tensegrity
structures continues to be an active research area, due to both their
easy control (geometry, size, topology and prestress control) [15],
and the fact that such structures provide minimum mass systems
under different loading conditions [16–18,14,19,20]. The use of
fractal geometries for the multiscale design of tensegrity systems
- diffusely illustrated [20,21] – is of particular interest.

The importance of protecting materials and buildings against
impacts with external objects is well known (cf., e.g., [4,22]).
Equally, there is growing interest in research into noninvasive tools
to target defects in materials, and for monitoring structural health
in materials and structures [23–26]. In the past, shock protectors
and devices used for focusing acoustic waves mainly relied on
energy dissipation and the modification of sound propagation
through spatially dependent delays. Highly efficient and uncon-
ventional mechanisms for protecting materials and focusing
mechanical waves through the use of rarefaction and compression
solitary waves have recently been discovered by [8,9]. It is worth
noting that arrays of tensegrity lattices with elastically hardening
response can be employed to fabricate tunable focus acoustic
lenses that support extremely compact solitary waves [8,9].
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Three-dimensional finite element (FE) models of lattice structures
usually make use of tetrahedral elements with a large number of
degrees of freedom [27]. Such models are hardly applicable to
dynamic simulations, even for lattices constituted by a small num-
ber of cells. A key goal of the present work is to develop efficient
and accurate models of tensegrity lattices that make use of 3D
assemblies of one-dimensional models for bars and strings. By
describing the bars as rigid members and the cables as elastically
deformable elements, we first develop the dynamics of an arbitrary
tensegrity network in matrix form, and next we show how to
switch such a formulation to vector form (Section 2). The latter
proves to be useful in order to coupling the proposed model with
standard FE models that may interact with tensegrity networks.
The time-integration of the equations of motion is conducted
through a Runge–Kutta algorithm that accounts for a rigidity con-
straint of the bars [28].

In Section 3, we apply the proposed numerical model to inves-
tigate the nonlinear wave dynamics of tensegrity columns. We
study the dynamic response of such systems to impact loading,
by establishing comparisons with the alternative model proposed
in Ref. [29], which assumes rigid response of the terminal bases
of each prism [30]. We show that our 3D modeling of tensegrity
columns allows us to detect different strain wave profiles, as a
function of the applied prestress, and a rigidity parameter describ-
ing the kinematics of the terminal bases (Section 4). Such tunable
response can be profitably used to build adaptive arrays of tenseg-
rity columns, which can subjected to different levels of prestress,
so as to generate solitary waves with different phases that coalesce
at a focal point in an adjacent host medium [23,24]. We draw the
main conclusion of the present study and future research lines in
Section 5.

2. A numerical model for the dynamics of tensegrity networks

The dynamic problem of a general three-dimensional lattice is
hereafter presented via a suitable, vector form reformulation of
the tensegrity dynamics presented in [31]. We first introduce some
basic notation (Section 2.1). Next we summarize the matrix-form
of the tensegrity dynamics diffusely illustrated in [31] (Section 2.2),
and then pass to develop the vector form of the equations of
motions employed in the present work (Section 2.3).

2.1. Basic notation

2.1.1. Matrices and vectors
Throughout the paper, we indicate matrices with bold capital

letters (ie X), vectors with bold lower case letters (i.e. x), and sca-
lars with italic letters (ie x).

For later use, we introduce the following operators:

– x̂ ¼ diag x1; x2; . . . ; xnð Þis an operator that produces a diagonal
matrix with the components x1; x2; . . . ; xn of the vector x;

– Xb c is an operator that keeps only the diagonal terms of the
square matrix X and set to zero all the off-diagonal terms;

– vec Xð Þ indicates the vectorizing operator that stack up all col-
umns of matrix X;

– the Kronecker product between two matrices A 2 Rm�n and
B 2 Rp�q, through the equation:

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2
664

3
775 2 Rmp�nq ð1Þ

where aij is the ith;jth element of the matrix A.

2.1.2. Tensegrity networks
Let us consider a tensegrity network made up of nn nodes (or

joints), nb bars and ns cables (Fig. 1). The joints are frictionless
hinges, and each member carries only axial forces. The bars (i.e.,
the compressed members) are assumed to behave as straight rigid
bodies (rods) with uniform mass density, constant cross-section,
and negligible rotational inertia about the longitudinal axis. The
cables are instead modeled as straight elastic springs that can carry
only tensile forces.

The generic node i, with i 2 1; . . . ; nn½ �, is located by the vector
ni 2 R3 in the three-dimensional Euclidean space, and is loaded
with an external force vector wi 2 R3. By suitably collecting the
vectors ni and wi, we introduce the following nodal and force
matrices:

N ¼ n1 n2 . . . ni . . . nnn½ � 2 R3�nn ð2Þ
W ¼ w1 w2 . . . wi . . . wnn½ � 2 R3�nn ð3Þ

The kth bar (or cable) k of the network, with k 2 1; . . . ;nb½ � (or
k 2 1; . . . ;ns½ �), is located by the vector bk 2 R3 (or sk 2 R3). For
example, if the kth bar connects nodes i and j, then bk ¼ nj � ni.
By stacking up the bar and string vectors, we obtain the following
matrices describing the geometry of all bars and cables:

B ¼ b1 b2 . . . bk . . . bnb

� � 2 R3�nb ; ð4Þ
S ¼ s1 s2 . . . sk . . . sns½ � 2 R3�ns ð5Þ

The center of mass of the kth bar between nodes i and j is
located by the vector rk ¼ ni þ nj

� �
=2. Collecting all the rk vectors,

we get the matrix:

R ¼ r1 r2 . . . rk . . . rnb
� � 2 R3�nb ð6Þ

It is useful to rewrite the above matrices as follows:

B ¼ NCT
B; S ¼ NCT

S ; R ¼ NCT
R ð7Þ

where CB 2 Rnb�nn and CS 2 Rns�nn are connectivity matrices of bars
and cables, respectively. The general ith row of CB (or CS) corre-
sponds to the ith bar (or cable), and the element CB ij (or CS ij) is equal
to: �1 if vector bi (or si) is directed away from node jth;1 if vector bi

(or si) is directed toward node jth, and 0 if vector bi (or si) does not
touch node j. Similarly, the ith row of CR 2 Rnb�nn corresponds to the
bar bi, and the element CR ij is equal to: 1 if vector bi is touching
node j, or 0 if vector bi does not touch node j. Following Ref. [14],
we say that a tensegrity network is of class n, if the maximum num-
ber of bars concurring in each node is equal to n.

2.1.3. Cable forces
Let us consider now the generic cable (say the kth one) with

Young modulus of the material Esk, cross-section area Ask, rest
length Lk, and stretched length sk (i.e. sk ¼ kskk, and sk P Lk). We
define the stiffness ksk and the prestrain pk through the following
equations:

ksk ¼ EskAsk

Lk
; ð8Þ

pk ¼
sk � Lk

Lk
ð9Þ

The force density carried by the current cable is given by the fol-
lowing (unilateral) constitutive equation (elastic, no-compression
response):

ck ¼max ksk 1� Lk
sk

� �
;0

� 	
; if : sk P Lk; ð10Þ

ck ¼0; if : sk < Lk ð11Þ
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