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a b s t r a c t

The discrete singular convolution (DSC) is used for free vibration analysis of three-layer angle-ply sym-
metric laminated plates with free boundaries, including laminated plates with two adjacent free edges.
During formulating the weighting coefficients of derivatives having different orders, two Taylor series
expansions with different orders are used to eliminate the degrees of freedom at fictitious points outside
the physical domain. Thus, the difficulty in handling free boundary conditions by using the DSC is over-
come. Results are presented and compared with either exact solutions or the ones obtained by the differ-
ential quadrature method (DQM). It is shown that the DSC with the novel way to apply the boundary
conditions yields very accurate lower mode frequencies as well as relatively accurate higher mode fre-
quencies. The excellent performance of the DSC on high mode frequencies of beams and isotropic plates
is retained and also independent of boundary conditions.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The demand in the design of high performance air vehicles has
resulted in consideration of fiber-reinforced composite materials
as the structural materials to improve the structural efficiency
[1]. Plates and shells are common structural elements. Their static,
buckling and vibration behaviors are of important to the designers
and thus have been received great attentions [2–5]. Due to the ani-
sotropic nature of the fiber-reinforced composite materials, analyt-
ical solutions are rarely available even for plates with simple
boundary conditions [3–8], therefore, the finite element method
(FEM) is the major approach in practice.

Besides the well-known finite element method, various approx-
imate and numerical methods, such as Rayleigh-Ritz method [9,10]
and Levy method [11], the differential quadrature method (DQM)
[12–18], the meshless method [19], and the discrete singular con-
volution (DSC) [20–31], have also been employed for obtaining
solutions of anisotropic as well as composite structures.

It has been shown that the DQM is one of the alternative effi-
cient methods for analyzing anisotropic rectangular plates [12–
18]. Due to its compactness and computational efficiency [14,15],
the DQM is more attractive than the Rayleigh-Ritz and Levy meth-
ods for analyzing anisotropic composite plates. Now the DQM has
been well-developed and can yield numerically exact solutions in
many cases. Thus the DQM has become a powerful new technique

for analyzing composite structures [13]. Similar to many other
numerical methods, however, the DQM cannot yield accurate
higher mode frequencies. Therefore, the research on other alterna-
tive efficient method, which can yield not only accurate lower
mode frequencies but also relatively accurate higher mode fre-
quencies, is an ongoing activity.

The discrete singular convolution, proposed by Wei [32,33], is
such an efficient method. It has been demonstrated that the DSC
can yield not only accurate lower mode frequencies but also rela-
tively accurate higher mode frequencies for beams and isotropic
rectangular plates [34–38]. The DSC has been successfully used
to analyze the mechanical behavior of laminated composite struc-
tures [22–31]. However, most cases investigated by the DSC are
rectangular plates or shells without a free boundary. The free
vibration of laminated rectangular plates with free boundaries
was investigated by using the DSC [27]. Perhaps due to the diffi-
culty in treating the boundary conditions at the free corners by
the DSC with Taylor series expansion to eliminate the degrees of
freedom at fictitious points outside the plate, the results presented
in [27] are not very accurate. This indicates that the title problem
has not been completely solved yet and deserves further investiga-
tions. How to implement boundary conditions properly is a very
important issue for success by using various strong form numerical
methods.

Currently, several ways are available in applying various bound-
ary conditions by using the DSC. The method of symmetric exten-
sion is used for applying the fixed boundary conditions and the
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method of anti-symmetric extension is used for applying the sim-
ply supported boundary conditions [33]. The iteratively matched
boundary (IMB) method [39] as well as the matched interface
and boundary (MIB) method [40] are mainly used for applying
the free boundary conditions. Although the IMB or MIB can be also
used to apply other boundary conditions, however, the methods of
anti-symmetric or symmetric extension are more convenient than
the IMB or MIB for applying the simply supported or clamped
boundary conditions. The method of Taylor series expansion
[27,28,38], completely different from all above-mentioned meth-
ods, eliminates the degrees of freedom (DOFs) at fictitious points
outside the physical domain without using the boundary condi-
tions and thus is a general method to apply any kind of boundary
conditions rigorously.

Very recently, it is reported that if the boundary conditions are
appropriately applied, the DSC can yield not only accurate lower
mode frequencies but also relatively accurate higher mode fre-
quencies for beams and isotropic rectangular plates with any com-
binations of boundary conditions [38]. To the best of author’s
knowledge, however, the performance of the DSC on the higher
mode frequencies of laminated composite plates has not been
reported thus far, especially for laminated plates with two adjacent
free edges.

The objective of this investigation is to extend the DSC for the
free vibration analysis of anisotropic rectangular plates with two
adjacent free edges. Two Taylor series expansions with different
orders are used to eliminate the DOFs at fictitious points outside
the plate during formulations of weighting coefficients of deriva-
tives with different orders. Additional derivative degrees of free-
dom at boundary points are introduced for applying various
boundary conditions rigorously. For verifications, DSC results are
compared with exact solutions, finite element data and results
obtained by the differential quadrature method (DQM). Three-
layer angle-ply symmetric laminated square plates with seven
combinations of boundary conditions and several ply angles are
investigated to show the effect of the boundary condition and
the material anisotropy on the frequencies as well as on the rate
of convergence of the DSC. The performance of the DSC on both
lower and higher mode frequencies of anisotropic square plates
with two adjacent free edges is studied.

2. Discrete singular convolution

For completeness, the DSC in one dimension is briefly reviewed
first. For two-dimensional problems, the approximation displace-
ment field can be assumed by using a tensor product of the dis-
placement function in one-dimension.

Denote N the total number of grid points, D ¼ Lc=ðN � 1Þ, where
Lc equals to the plate length a or plate width b in this paper. The N
grid points are denoted by xi ¼ ði� 1ÞDði ¼ 1;2; . . . ;NÞ. In the DSC,
the nth (n = 0,1,2. . .) order derivative of a function wðxÞ is approxi-
mated via a discredited convolution as [32–37]

wðnÞðxÞ �
XM
k¼�M

dðnÞa;rðx� xkÞwðxkÞ ð1Þ

where 2M þ 1 is called the computational bandwidth, xk ¼ kD
ðk ¼ �M; . . . ;�1;0;1; . . . ;MÞ are uniformly distributed grid points,
da;rðx� xkÞ is a collection symbol for the DSC kernels and its nth

order derivative is given by

dðnÞa;rðx� xkÞ ¼ d
dx

� �n

da;rðx� xkÞ ð2Þ

In the DSC algorithm, several delta kernels are available [37].
The two widely used delta kernels are the regularized Shannon
kernel and the non-regularized Lagrange’s delta sequence kernel.

The DSC with the regularized Shannon kernel is commonly called
the DSC-RSK [23–37] and the DSC with the non-regularized
Lagrange’s delta sequence kernel is commonly called the DSC-LK
[27,28,34,38].

The regularized Shannon kernel is given by [37]

da;rðx� xkÞ ¼ sin ðp=DÞðx� xkÞ½ �
ðp=DÞðx� xkÞ exp �ðx� xkÞ2

2r2

" #
ð3Þ

where a ¼ p=D; r is the controllable parameter which should be
carefully selected. The criterion to select the controllable parameter
rwith a given D and required accuracy is given by Wei et al. in [37].

The non-regularized Lagrange’s delta sequence kernel is given
by

da;rðx� xkÞ ¼
LM;kðx� xkÞ for� b 6 x 6 b

0 otherwise

�
for M ¼ 1;2; ::: ð4Þ

where b 6 Lc and LM;kðxÞ is the Lagrange interpolation defined by
[35]

LM;kðx� xkÞ ¼
YkþM

j¼k�M;j–k

x� xj
xk � xj

ðM P 1Þ ð5Þ

The differentiation in Eq. (2) can be easily carried out for the
two kernels. For the DSC-RSK, analytical expressions are used to
compute its various derivatives at a grid point and thus the num-
ber of grid points can be very large [38]. For the DSC-LK, the kernel
is already discretized and the explicit formulas to compute the
weighting coefficients existing in the DQM [18,28] can be
employed to obtain the derivatives at a grid point.

The DSC-LK does not contain a controllable parameter r and
thus is simpler than the DSC-RSK. Besides, previous research
showed that the DSC-LK can yield similar solution accuracy as
the DSC-RSK [38]. Therefore, the DSC-LK is used in present investi-
gations for simplicity. Besides, the DSC-LK is simply called the DSC
since only one delta kernel is used in this paper.

A fourth-order partial differential equation is to be solved by
using the DSC and the highest value of n in Eq. (2) is four. Take
point 1 as an example, the first- to the fourth-order derivatives
at x1 = 0 are given by,

wð1Þð0Þ ¼
XM
j¼�M

~A0jwðxjÞ ¼
XM
j¼�M

~A0jwj or wð1Þðx1Þ ¼
XM
j¼�M

~A1jwj ð6Þ

wð2Þð0Þ ¼
XM
j¼�M

~B0jwðxjÞ ¼
XM
j¼�M

~B0jwj or wð2Þðx1Þ ¼
XM
j¼�M

~B1jwj ð7Þ

wð3Þð0Þ ¼
XM
j¼�M

~C0jwðxjÞ ¼
XM
j¼�M

~C0jwj or wð3Þðx1Þ ¼
XM
j¼�M

~C1jwj ð8Þ

wð4Þð0Þ ¼
XM
j¼�M

~D0jwðxkÞ ¼
XM
j¼�M

~D0jwj or wð4Þðx1Þ ¼
XM
j¼�M

~D1jwj ð9Þ

where ~A1j, ~B1j, ~C1j and ~D1j are called the weighting coefficients of the
first-, second-, third- and fourth-order derivatives at x1 = 0.

The weighting coefficients ~A0k, ~B0k, ~C0k and ~D0k can be computed
explicitly by [18,28],

~A0j ¼
YM

m¼�M;m–0;j
ð�xjÞYM

m¼�M;m–j
ðxj � xmÞ

ðj¼�M; :::;�1;1; :::;MÞ; ~A00 ¼
XM
m¼�M
m–0

1
ð�xmÞ

ð10Þ
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