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a b s t r a c t

In this study, a free-form optimization method is proposed that maximizes the fundamental frequencies
of the orthotropic shells to avoid vibrational resonance. The negative fundamental vibrational eigenvalue
is employed as the objective function, which is minimized by subjecting to the governing equation of the
natural frequency analysis and area constraint. In the free-form optimization process, the natural fre-
quency analysis of the orthotropic shells is performed to calculate the shape gradient function. The shape
gradient function is then applied to the velocity analysis for determining the optimal shape variation. The
repeated eigenvalues are considered by converting the fundamental eigenvalue to a summation form of
the repeated eigenvalues. The proposed optimization method is validated using three examples of the
orthotropic shells. The numerical results show that the optimized shapes of the orthotropic shells are
smooth, and their fundamental frequencies are significantly enhanced using the proposed free-form opti-
mization method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their advantages, such as low weight, high strength,
and anisotropic-material characteristics, composite shells consid-
ering material orientations have been widely used as structural
members in aircraft, marine, automotive, and civil engineering
[1]. Orthotropic shells, which are a subset of anisotropic shells,
have different material properties along two mutually orthogonal
directions. Since the last few decades, theoretical analyses have
been conducted on anisotropic shells considering their mechanical
properties such as stiffness [2,3], buckling [3–6], vibration [3–5,7],
and wave propagation [8]. With respect to the vibration of the
shells, Liew et al. [9] summarized most of the studies conducted
on the isotropic shells since the 1970 s based on the Kirchhoff–
Love, Reissner–Mindlin, and higher-order shell theories. Consider-
ing the material orientations, Qatu et al. [10] reviewed most of the
studies on the dynamic analysis of the anisotropic shells conducted
during 2000–2009. They noted that the finite element method
(FEM) was increasingly applied to analyze the vibration of the ani-
sotropic shells having various geometries. In this study, the focus is
on optimizing the shapes of the orthotropic shells for maximizing
the natural frequency using the FEM and a gradient method for the
shape optimization of shells [11].

To obtain the best mechanical performance, some design opti-
mization studies were conducted on the anisotropic shells consid-
ering low weight (or thickness) [12,13], stiffness [14–19], buckling
[20–23], and dynamic problems [14,20,24–30]. Among these stud-
ies, only a few concentrated on the orthotropic shells [14,15,25].
For instance, Luo and Gea [14] proposed a bending equivalent
orthotropic model to investigate the optimal bead orientation of
the shell structures for both static and dynamic cases based on
the stress resultant-strain and stress couple-curvature relations
of the bead-stamped shell elements. Based on the multiquadric
method and an optimization technique, Roque et al. [15] analyzed
the orthotropic shells for the static cases using the mesh-less
method with the help of a higher-order shear deformation theory.
By employing the non-gradient evolutionary genetic algorithm,
Cho [25] successfully optimized the local fiber angles of the ortho-
tropic shells subjected to a hygrothermal environment in order to
minimize the dynamic responses.

In the design optimization of the structures, the dynamic prob-
lem includes both the natural vibration problem [14,20,27–30] and
the frequency response problem [25,26,31]. The fundamental fre-
quency maximization problem considered in this study is classified
under the natural vibration problem, as it involves eliminating the
vibrational resonance. Nshanian and Pappas [20] formulated a
mathematical programming problem using the segment ply angles
and thicknesses as the design variables and applied it for maximiz-
ing the fundamental natural frequency of the anisotropic shells.
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The results showed that efficient shells were obtained using the
optimal variable ply angle configurations. Furthermore, recently,
several studies were conducted on maximizing the fundamental
frequency of the anisotropic shells [27–30]. Using the lamination
parameters as the design variables, Trias et al. [27] maximized
the fundamental frequency of the anisotropic cylinders for a large
number of thicknesses and aspect-ratio combinations. For simulta-
neously maximizing fundamental natural frequencies of the aniso-
tropic plates, Vosoughi et al. [28,29] introduced a hybrid multi-
objective optimization technique combined with the differential
quadrature method, undominated sorting genetic algorithm II,
and Young’s bargaining model. Hu and Chen [30] maximized the
fundamental frequencies of the anisotropic truncated conical shells
under the axial compressive forces using the golden section
method.

The aforementioned studies related to the fundamental fre-
quency maximization problem exhibited their applicability and
usefulness in design optimization of the anisotropic shells. How-
ever, most studies adopted the parametric optimization methods
in the vector space belonging to the discrete system that use the
design parameters (dimensions, thicknesses, material orientations,
etc.), for which the designers need to have considerable knowledge
and experience. Compared to the parametric optimization method,
the non-parametric (or parameter-free) free-form optimization
techniques based on the gradient method in the function space
(belonging to the continuous system) has an advantage of treating
all nodes as design variables in the large-scale problem. Thus, the

method does not require the design parameters in advance. In
the previous studies conducted by the authors, a free-form opti-
mization method based on the H1 gradient method was developed
for designing the composite solids [32–34], damping material-
inlaid plates [35], and isotropic shells [36,37]. In these previous
studies, we employed the free-form optimization method to opti-
mize the shapes of the solids and shells/plates considering the stiff-
ness, structural-acoustic coupling, and buckling problems. All of
these studies focused on the shape optimization of isotropic mate-
rials; however, shape optimization of anisotropic materials is also a
worthwhile work, and we have employed the optimization method
to maximize the stiffness of the orthotropic shells [16]. In this
study, the objective is to extend this method to optimize the
shapes of the orthotropic shells for maximizing the fundamental
frequency considering the repeated eigenvalues. In the upcoming
study, we will optimize the shapes of the anisotropic shells consid-
ering the variation in the material orientation of the anisotropic
shells. As such, in this study, the first step is to optimize the shape
of the orthotropic shells without considering the variation in the
material orientation.

The free-form optimization method employed in this study has
four essential steps: (I) Deriving the shape gradient function based
on the Lagrange multiplier method. (II) Calculating the shape gra-
dient function based on the results of the natural frequency analy-
sis. (III) Using the shape gradient function to determine the optimal
shape variation (i.e., optimal design velocity) based on the H1 gra-
dient method. (IV) Modifying the shape using the optimal design

Nomenclature

ð�ÞðmÞ ðm ¼ 1;2;3 . . .Þ mth eigenvector of eigenvalue
ð�Þ variation
ð�Þ0 ¼ ð _�Þ � ð�Þ;iVi shape derivative
ð _�Þ material derivative
ð�Þ;i ¼ @ð�Þ=@xi partial differential notation
að�; �Þ virtual work in terms of rigidity
A mid-surface of the orthotropic shell
As mid-surface of the orthotropic shell after shape varia-

tion
bð�; �Þ virtual work in terms of inertia
c side length of the shell
CH admissible function space satisfying the constraints of

the shape variation
D bending rigidity
Ea ða ¼ 1;2Þ orthotropic Young’s modulus
Eabcd

� � ða;b; c; d ¼ 1;2Þ orthotropic elastic tensor with respect to
the membrane force

ESab
n o

ða;b ¼ 1;2Þ orthotropic elastic tensor with respect to the
shear force

G ¼ Gn shape gradient function
GV , GS shape gradient density functions
H1ðAÞ Sobolev space of order 1
k shear correction factor
L Lagrangian function
n normal vector
nbtm normal vector at the bottom surface of the shell
nmid normal vector at the mid-surface of the shell
ntop normal vector at the top surface of the shell
s iteration history of the shape variation
S area of the orthotropic shell
S0 initial area of the orthotropic shell
Ŝ constraint area of the orthotropic shell
t thickness of the shell
u ¼ uif gði ¼ 1;2;3Þ displacement vector in the local coordinate

system

u0 ¼ u0af gða ¼ 1;2Þ in-plane displacement vector in the local
coordinate system

U admissible function space satisfying the Dirichlet
boundary conditions

V ¼ Vnf g ðn ¼ 1;2;3Þ design velocity field
V0 ¼ V0af gða ¼ 1;2Þ in-plane design velocity field
V3 out-of-plane design velocity field
w out-of-plane displacement
ðx1; x2; x3Þ

local coordinate system
ðX1;X2;X3Þ global coordinate system
X position vector in the global coordinate system
Xs position vector in the global coordinate system after the

shape variation
@A boundary of A
R a set of real numbers
a spring constant of the Robin boundary condition
d tolerance for determining the repeated eigenvalues
e a small positive number
j twice the mean curvature of the orthotropic shell
kðmÞ ðm ¼ 1;2;3 . . .Þ mth vibrational eigenvalue
l shear modulus of the isotropic shell
la ða ¼ 1;2Þ shear modulus of the orthotropic shell
m Poisson’s ratio
h ¼ haf gða ¼ 1;2Þ rotation angle vector in the local coordinate

system
h ¼ haf gða ¼ 1;2;3Þ rotation angle vector in the global coordi-

nate system
q density
x angular frequency
�x non-dimensional frequency parameter
Ds small amount of the shape variation
K Lagrange multiplier of the area constraint
X domain of the orthotropic shell including the thickness
Xs domain of the orthotropic shell after the shape variation
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