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a b s t r a c t

Based on the structure of the full unit cell which is formulated by three translational symmetries, three
further 180� rotational symmetries of three-dimensional (3D) four-directional braided composites are
clarified in this paper. It is for the first time that each rotational symmetry is used to reduce the full unit
cell to a half, quarter, and eighth size. The corresponding boundary conditions for thermal analysis are
derived precisely according to each rotational transformation. The effective thermal conductivities of
composites with different fiber volume fractions and interior braiding angles are calculated by the full,
quarter and eighth unit cells. In order to confirm the significance of accurate boundary conditions, addi-
tional comparison calculations with adiabatic boundary conditions are conducted and the result reveals
that inappropriate boundary conditions may lead to an un-neglectable error in the prediction of thermal
conduction behaviours. The numerical model is validated by good agreement between the numerical
results and the available experimental ones.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional (3D) braided composite has been widely
studied for its excellent mechanical performance and industry
application potential [1–4]. During the production of the compos-
ite, the 3D textile should be braided first by a particular braiding
process and then solidified with matrix and finally form the com-
posite. The well-known four-step braiding can fabricate 3D four-
directional [5], five-directional [6], six-directional and even
seven-directional braided textiles [7]. The microstructure of 3D
four-directional braided preform and especially the yarns’ spatial
configuration are analyzed and illustrated according to the braid-
ing process in [5,6]. For the braided composite which is often a
periodic structure, its performance is often studied by taking only
a representative volume element (unit cell) into account. A unit
cell formulated based on the microstructure analysis and the
related numerical simulation is a very effective approach used in
the study of composites’ performance including elastic and shear
modulus [8–11], and failure behaviours [12,13]. Similarly, thermal
performance of 3D four-directional braided composites can be cal-
culated in the same way [14–17].

As discussed above, the formulation of a unit cell is based on the
analysis of the composite microstructure, more specifically it is the
geometric symmetries exist in the composite structure that should
be identified and analyzed. There are three types of symmetries in
the nature, i.e., translations along an axis, reflections about a plane
and rotations about an axis. The formulation of a unit cell has two
steps: identifying symmetries presented in the composite and
deriving corresponding boundary conditions. In relevant works
about particle reinforced composites [18], unidirectional fiber rein-
forced composites [19,20], and several types of woven composites
[21–24] symmetries are fully exploited to formulate unit cells of
different sizes. However, most studies focus on the mechanical
problems and only the corresponding mechanical boundary condi-
tions for unit cells are derived. The thermal problems need thermal
boundary conditions. The authors’ previous work [25] should be
the first time for using unit cells of different sizes to predicting
the effective thermal conductivity of plain woven composites,
and three reducing-size unit cells are formulated according to
translational, reflectional and 180� rotational symmetries and the
related thermal boundary conditions are precisely derived. Accord-
ing to the authors’ knowledge, for 3D four-directional braided
composites most previous works [14–17,26,27] built unit cells by
utilizing only the translational symmetries no matter whether it
was stated in the papers. A unit cell formulated by translational
symmetries can be called a full unit cell.
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In the present work, it is for the first time that three 180� rota-
tional symmetries exhibited in the full unit cell are clarified based
on the microstructure analysis, and three half, quarter and eighth
unit cells are formulated according to the three rotational transfor-
mations. Thermal boundary conditions of the unit cells are derived
step by step. Numerical models based on the full, quarter and
eighth unit cells are established to predict the temperature distri-
butions and the effective thermal conductivities of 3D four-
directional braided composites.

2. The formulation of unit cells

Fig. 1(a) shows the schematic diagram of the full unit cell UC1,
and Fig. 1(b) displays the symmetry of several braiding yarns’ ori-
entation and will be discussed later. As shown in Fig. 1, the full unit
cell UC1 depicted by black lines is defined by the domain 0 6 x 6 a
& 0 6 y 6 b & 0 6 z 6 h, the quarter unit cell UC2 depicted by red
lines is defined by the domain 0 6 x 6 a/2 & 0 6 y 6 b/2 & 0 6 z 6 h,

while the eighth unit cell UC3 depicted by blue lines is defined by
the domain 0 6 x 6 a/4 & 0 6 y 6 b/2 & 0 6 z 6 h. After a 180� rota-
tion of UC1 about axis X1 = (x, b/2, h/2) a half cell shown in Fig. 2
can be formulated, and after a 180� rotation of the half cell about
axis Y1 = (a/2, y, h/2), a quarter unit cell UC2 shown in Fig. 3 can
be formulated. After a 180� rotation of UC2 about axis Z1 = (a/4,
b/4, z) an eighth unit cell UC3 can be ultimately formulated and
shown in Fig. 4. For the complexity of the geometric structure, it
would be necessary to further illustrate three rotational symme-
tries exhibited in 3D four-directional braided composite.

Before the illustration of the composites’ rotational geometric
symmetries, the coordinate transformations resulted from a 180�
rotation about the axes should be clarified first. It is clear that an
arbitrary node M = (x1, y1, z1) will be transformed to node M0 =
(x1, b � y1, h � z1) by a 180� rotation about axis X1 = (x, b/2, h/2),
to node M00 = (a � x1, y1, h � z1) by a 180� rotation about axis Y1 =
(a/2, y, h/2) and to node M0 00 = (a/2 � x1, b/2 � y1, z1) by a 180� rota-
tion about axis Z1 = (a/4, b/4, z). At this condition the rotational
geometric symmetries presented in 3D four-directional braided
composite can be further illustrated by transformations of two typ-
ical braiding yarns L1 and L2 (a half segment of the long yarn) in
UC2 as shown in Fig. 1(b). The braiding yarns can be expressed
by the coordinates of the start and end points of each yarn, the blue
hexagonal and the red circular points in the figures are assumed to
be the start point and the end point, respectively. Then we have
L1 = (0, b/8, h/2) � (a/2, b/8, h) and L2 = (a/8, 0, 0) � (a/8, b/2, h/2).
With a 180� rotation about X1 = (x, b/2, h/2), yarn L1 will be trans-
formed to L01 = (0, 7b/8, h/2) � (a/2, 7b/8, 0), with a 180� rotation
about Y1 = (a/2, y, h/2), yarn L1 will be transformed to L001 = (a, b/8,
h/2) � (a/2, b/8, 0), and with a 180� rotation about Z1 = (a/4, b/4,
z), yarn L1 will be transformed to L01

00 = (a/2, 3b/8, h/2) � (0, 3b/8,
h). L2 will be transformed to L20 = (a/8, b, h) � (a/8, b/2, h/2), L002 =
(7a/8, 0, h) � (7a/8, b/2, h/2) and L02

00 = (3a/8, b/2, 0) � (3a/8, 0,
h/2) by the three 180� rotations, respectively. The coordinate trans-
formations of the two braiding yarns are summarized in Table 1.

(a) Geometrical model 

(b) The symmetry of braiding yarns’ orientation

Fig. 1. The full unit cell UC1. Fig. 2. The half cell.
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