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In this work a kinematics for laminated beams enriched with a refined formulation ZigZag (RZT), origi-
nally presented by Tessler et al. in 2007, introduced in a hierarchical one dimensional type “p” finite ele-
ment is presented. The finite element employs Lagrange polynomials for the approximation of the
degrees of freedom of the ends (nodes) and orthogonal Gram-Schmidt polynomials to the internal

degrees of freedoms. This finite element allows a very low discretization, is free of shear locking and
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behaves very well when the analysis of laminated composites with accurate determination of local stres-
ses and strains at laminar level is necessary.

This element has been validated in the analysis of laminated beams with various sequences of symmet-
ric and asymmetric stacking, studying in each case its accuracy and stability.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and review

Laminated composite beams are basic components for several
structural engineering applications, due to their excellent mechan-
ical properties, namely high specific strength and stiffness, long
fatigue life, wear resistance and enhanced design freedom on a
micro- and macro-mechanical level. The behavior of laminated
beams is governed by a wide number of parameters due to their
complex behavior. Moreover, specific problems arise such as
delamination and complex damage and failure mechanisms that
need a proper modeling for an accurate appraisal of the study of
their mechanics. In particular, as it is shown by Carrera [1-2], a
slope discontinuity on the displacement field occurs at the inter-
face between two perfectly bonded layers because of the trans-
verse anisotropy, i.e. the difference in layer-wise transverse shear
and normal moduli. This is known as the ZigZag (ZZ) phenomenon.

Considering theses aspects a number of theories have been pro-
posed for the analysis of composite laminates. Theories used for
the through -thickness variation of the state variables (unknowns
are of displacement type) can be classified as: equivalent single
layer models (ESL), layer-wise models (LW) and zigzag models
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(ZZ). The well-described unified formulation, initially presented
by Carrera [3] and extended by Demasi [4-8], describes precisely
and clearly the models, types and class of these theories.

In the ESL theories the assumed displacements vary continu-
ously across the laminate thickness and the number of unknowns
is independent of the number of layers. ESL models include mainly
three major categories, i.e., the classical theory (CT), the first-order
theory (FDT), and the higher-order theory (HOT). The CT known as
Euler-Bernoulli beam theory is the simplest one and is inaccurate
for reasonably thick laminated beams and/or for highly anisotropic
composite beams. The inaccuracy is due to neglecting the trans-
verse shear strains in the laminate. The FDT by Timoshenko [9]
considers constant transverse shear strain distribution through
the beam thickness and, thus, a shear correction factor has to be
incorporated to adjust the transverse shear stiffness. The accuracy
of FDT solutions depend on the shear correction factor which can-
not in general be determined a priori apart from very special cases
[10]. Moreover, FDT produces piecewise constant transverse shear
stresses that violate the interlaminar continuity (IC) conditions and
the traction-free conditions at the top and bottom surfaces. To
overcome these shortcomings and to avoid the use of shear correc-
tion factors, a number of high-order theories with different shear
strain shape functions were introduced. In general, the cross sec-
tion is allowed to deform in any form by including higher order
terms in the axiomatic expansion of the displacement field along
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the beam direction (x-axis) as a suitable smooth function of trans-
verse direction (z-axis). In this sense different shape functions have
been proposed such as polynomial [11-14], trigonometric [15-18],
exponential [19-21] and hyperbolic functions [22,23]. Carrera et al.
[24] discussed a number of refined beam theories which were
obtained expanding the unknown displacement variables over
the beam section axes by adopting Taylor’s polynomials, trigono-
metric series, exponential, hyperbolic and zigzag functions, by
using the Unified Formulation introduced by Carrera [3]. A class
of theories often included into HOT are the advanced higher order
theories, denoted as AHOT, where transverse normal strains are
incorporated by extending the expansion of the transverse dis-
placement. For instance, Vidal et al. [25] proposed the approxima-
tion of the displacement field as a sum of separated functions of
axial and transverse coordinate by adopting the Proper Generalized
Decomposition procedure. HOT gives a continuous variation of the
transverse shear strain across the thickness but shows discontinu-
ity in the shear stress distribution at the layer interfaces (if they are
computed through the constitutive equations) due to different val-
ues of shear rigidity at the adjacent layers. But the actual behavior
of a composite laminate is opposite i.e., the transverse shear stress
must be continuous at the layer interface and the corresponding
strain may be discontinuous [26].

In LW models [27-34] the displacement field within each layer
is prescribed and compatibility conditions are applied between
adjacent layers in the laminate to recover the model of the lami-
nate as a whole. These models provide realistic descriptions of
kinematics at the ply level and they have the capacity to take into
account the zigzag effect. However, LW approaches suffer from an
excessive number of displacement variables in proportion to the
number of layers and hence they are too expensive in terms of
computational cost and hardly appropriate for practical
applications.

ZigZag models include a set of layer independent theories in
which a LW discontinuous function is a priori selected to enrich
the kinematical model in such way that the interface conditions
are met. So, in these theories, the in-plane displacements have
piece-wise variation across the beam thickness and the number
of unknowns results independent of the number of layer. Examples
of ZZ theories are those found in articles published by Murakami
[35], Lee et al. [36], Cho and Paramerter [37], Cho and Averill
[38], Vidal and Polit [39,40].

The research activity about the modeling of laminated struc-
tural members and the corresponding analytical or numerical solu-
tions are numerous. In particular, as this paper is devoted to ZigZag
models a complete and extensive assessment about the subject can
be found in Carrera [1]. Other reference in the topic is the review
paper by Chakrabarti et al. [26]. On the other side, Groh and Wea-
ver [41] present, in the article introduction, a comprehensive over-
view of the different theories that are used for the analysis of
highly heterogeneous laminated beams.

Many ZigZag theories requires C' continuity for the deflection
field, which is a drawback versus simpler C° continuous FEM
approximations [42]. Tessler et al. [43-45] developed a refined zig-
zag theory (RZT) that allows the use of C° continuous interpolation
for all the kinematic variables. The kinematics of RZT is essentially
that of FDT enhanced by a zigzag field which has the property of
vanishing on the top and bottom surface of the laminate.

Along with the development of beam theories, there has been
significant development towards the solution methodologies. Ana-
lytical solutions are applicable for a few particular classes of beam
configuration [46,47]. The development of computational tech-
nologies makes it quite possible to implement numerical methods
for the practical applications. Among these, FEM is most popular
and versatile method for investigating the structural behavior of

arbitrary shaped components. In this context Ofiate et al. [42]
developed a simple 2-noded beam element based on the RZT the-
ory, where shear locking is avoided using reduced integration on
selected terms of the shear stiffness matrix. The classical version
or h version of FEM was used in this paper, where the accuracy
of the solution is achieved by refinement of finite element mesh.

Unlike the h FEM version, in the p version of FEM the mesh
remains constant while the degree of the interpolation polynomial
is gradually increased to the desired accuracy [48]. The degrees of
freedom of a p element are constituted by the degrees of freedom
of the one-dimensional element ends (nodes) and the amplitudes
of the shape functions within the element. The p-version is charac-
terized by being more robust than the version h [49], in other
words the performance of the p-version is much less sensitive to
input data tan the h-version. For example, the p version allows
proper treatment of elements with high slenderness, as it is free
of shear locking. This is especially important in the analysis of lam-
inated composite beams, where a more rigorous stress analysis at
laminar and inter-laminar level is necessary. Several demonstra-
tive examples and theoretical proofs of the advantages of the
p-version FEM can be found in the literature [48,50-54]. Recall that
the advantages of the p version are not limited to the greater con-
vergence rate. In fact, with h methods, the accuracy of the solution
is determined by executing several analyses with different meshes,
an expensive and time-consuming process, both because of the
computational cost and because of the operator time required to
define the different models. In p-convergent approximations, the
number of finite elements is determined by the geometry and is
small [55].

In this paper a hierarchical one-dimensional finite element,
based on the ZigZag refined theory by Tessler et al. [43-45] is pro-
posed. This finite element has two end nodes and four degrees of
freedom per node. To approximate the kinematics variables of this
formulation Lagrange polynomials as local support functions are
used, and orthogonal polynomials generated by means of recur-
rence Gram-Schmidt expressions [58-59] are employed as func-
tions of hierarchical enrichment [60-63]. It is necessary to
emphasize here that one of the main novelty of the proposed
model is the obtaining of a hierarchical finite element within the
framework of a Zig-Zag theory, considering local support functions
of Cp type and achieving a robust finite element free of shear lock-
ing. Besides, the developed formulation is appropriated for the
analysis of symmetric and non-symmetric laminated beams in a
general and unified way, since all mechanical coupling are consid-
ered. Another important and salient feature of the developed
model is the capacity it has for its application to the delamination
study as will be seen in Section 8.

The proposed finite element has been computationally imple-
mented. To verify the results, the order of the approximation can
be selectively increased. This operation is carried out very effi-
ciently because it is not necessary to generate a new mesh and
because the new linear stiffness matrix contains the preceding
one. It is demonstrated that the proposed hierarchical finite ele-
ment is free of shear locking and, in order to assess its accuracy
and stability, it has been applied to the analysis of laminated
beams with symmetrical and non-symmetrical stacking sequence
with different boundary conditions.

2. Formulation of the mechanical problem

Let us consider a laminated beam of total thickness h and
length L as shown in Fig. 1. The Cartesian coordinate system
(x,y,z) is taken such that the x—y plane (z=0) coincides
with the midplane of the beam, the y axis is along the
width (b) of the beam; resulting in a beam domain
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