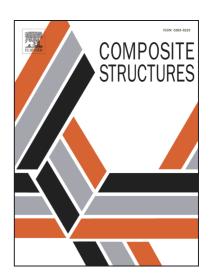
Accepted Manuscript

CFRP Shear Strengthening of Reinforced Concrete Beams in Zones of Combined Shear and Normal Stresses

Noor Akroush, Tariq Almahallawi, Mohamed Seif, Ezzeldin Yazeed Sayed-Ahmed

PII: S0263-8223(16)30876-5


DOI: http://dx.doi.org/10.1016/j.compstruct.2016.11.075

Reference: COST 8036

To appear in: Composite Structures

Received Date: 11 June 2016

Accepted Date: 24 November 2016

Please cite this article as: Akroush, N., Almahallawi, T., Seif, M., Yazeed Sayed-Ahmed, E., CFRP Shear Strengthening of Reinforced Concrete Beams in Zones of Combined Shear and Normal Stresses, *Composite Structures* (2016), doi: http://dx.doi.org/10.1016/j.compstruct.2016.11.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

CFRP Shear Strengthening of Reinforced Concrete Beams in Zones of Combined Shear and Normal Stresses

Noor Akroush^a, Tariq Almahallawi^a, Mohamed Seif^a, Ezzeldin Yazeed Sayed-Ahmed^{b*}

^aSenior Student, Construction Engineering Dept., the American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.

Ē.

mails: noor.akroush@aucegypt.edu, tariqmohamed@aucegypt.edu, mohamedseif@aucegypt.edu edu

^bProfessor, Construction Engineering Dept., the American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.

E-mail: eysahmed@aucegypt.edu

Abstract

Strengthening RC beams using FRP laminate becomes one of the main strengthening techniques. Failure of these beams is usually controlled by the bond strength between the laminate and the concrete. As such, ACI 440.2-08 limits the bond strength via a bond reduction factor, which is adopted to reduce the effective strain in the FRP laminate. Equations characterizing the shear strength of such beams, which explicitly include the said bond reduction factor, has been verified for region of high shear stress and negligible normal stress. Such conditions simulate the high shear stress zone in a simply supported beam in the vicinity of the support; however, they fail to mimic the high shear and normal stresses zones in continuous beams existing in the vicinity of any intermediate support. Allegedly, the ACI 440.2-08 adopts the bond reduction factor for zones of combined high shear and normal stresses because "it is sufficiently conservative". Consequently, this paper presents an experimental investigation performed on continuous RC beams strengthened with CFRP sheets: sheets were U-wrapped around the intermediate support of eight two-span beams. The investigation serves to confirm whether or not the currently adopted bond reduction factor is conservative for regions of combined normal and shear stresses.

Keywords: bond reduction factor, CFRP debonding, carbon fibre; reinforced concrete beams; shear strength.

_

^{*} Corresponding Author

Download English Version:

https://daneshyari.com/en/article/4912250

Download Persian Version:

https://daneshyari.com/article/4912250

<u>Daneshyari.com</u>