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a b s t r a c t

In this work, we develop a facet shell element for deep laminated shells, by extending a successful four-
node quadrilateral element for laminated plates based on the efficient third order zigzag theory. The
obstacle course test comprising of three standard problems is undertaken to examine its performance
for various modes of shell behavior. The absence of shear and membrane locking problems is established
through the analysis of ultra thin shells. The accuracy of the element is assessed for the static and free
vibration responses of composite and sandwich shells in comparison with the three dimensional
elasticity solutions. In terms of accuracy, computational efficiency and robustness, the present element
is shown to give better performance than various classical and recent finite elements considered in this
study. In the case of sandwich shells, for which the equivalent single layer theories showed a high level of
error, the present element is shown to yield more accurate results than even the higher-order sandwich
shell theories that have been developed specifically for the three-layer sandwich shells.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The growing popularity and success of laminated structures in
various industries particularly in aerospace, naval, automobile
and space applications has indeed compelled scientists and engi-
neers to analyse these structures using models which are more
accurate and computationally efficient than the existing ones. This
is evident from the large number of publications (�515) that have
appeared in the past decade on the computational models for static
and dynamic analysis of composite laminated shells, as listed in
the review article of Qatu et al. [1,2]. The realization of the scope
and versatility of the finite element method (FEM) in 60 s resulted
in its growing popularity, and a large number of parallel studies
were conducted for the development of finite elements for analysis
of isotropic and laminated shell structures. The three dimensional
(3D) solid elements are often computationally inefficient for mod-
eling layered structures as the problem size increases in proportion
with the number of layers. Hence, finite element models based on
two-dimensional shell theories have been developed.

Several review articles have been published periodically on the
development of shell finite elements based on 2D models [3–6].
The triangular facet shell elements [7,8], the doubly curved

triangular shell elements based on the Novozhilov’s shallow shell
theory [9–11], the rectangular doubly curved shallow shell
element [12] and the degenerated curved shell element [13] are
among the earliest shell elements developed for the analysis of iso-
tropic shells. Apparently the first FE model for laminated anisotro-
pic shells of general shapes is due to Thompson and Bert [14],
which was developed based on the classical laminate theory
(CLT). This element was, however, restricted to shallow shells.
The CLT completely neglects the shear deformation effect, which
is known to be very significant in fiber reinforced polymer (FRP)
composites due to their low shear modulus to longitudinal modu-
lus ratio. Also, this theory requires C1-continuity of the deflection
variable, which is difficult to be satisfied in a quadrilateral element.
For these reasons, elements based on shear deformable theories,
requiring C0-continuity of interpolation functions were developed.
Panda and Natarajan [15] presented an eight-node doubly curved
quadratic shell element for laminated composite shells, by extend-
ing the Ahmad’s degenerate shell element for isotropic shells [13].
Shell elements developed based on the FSDT include the linear and
quadratic elements presented by Reddy [16] and Chakravorty et al.
[17]. However, the early FSDT based C0-continuous elements suf-
fered from problems such as shear/membrane locking in thin shells
and spurious zero energy modes for which improvements such as
the so called mixed-enhanced formulation [18] and the mixed
interpolation of tensorial components (MITC) [19] have been pre-
sented. A major drawback of the FSDT for laminated structures is
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its strong dependence on shear correction factors, whose accurate
estimation for anisotropic laminates is not trivial [20]. This has
motivated the development of higher order theories (HOTs) that
do not require shear correction factors. C0-continuous four-node,
nine-node Lagrangian and eight-node serendipity shell elements
based on HOTs have been presented for laminated composite
cylindrical shells [21,22] and doubly curved shells [23,24].

The CLT, FSDT and the HOTs belong to the category of equiva-
lent single layer (ESL) theories in which the displacements are
approximated to follow a single global variation across all layers
of the laminate. This assumption makes the number of primary
displacement variables independent of the number of layers in
the laminate, and consequently the theories are computationally
efficient. But, they can give very erroneous results for moderately
thick and even thinner laminates having high anisotropy and inho-
mogeneity, since they do not account for the slope discontinuity in
the through-thickness variations of the inplane displacements, at
the interfaces between adjacent layers of different material proper-
ties, as observed from the 3D elasticity solutions [25]. To incorpo-
rate the slope discontinuity of the inplane displacement field,
layerwise theories (LWT’s) have been developed for laminated
shells, wherein the displacements are assumed to follow a linear
or higher order variation across each layer separately [26]. Several
triangular [27,28] and quadrilateral [22,29–31] shell elements
have been developed based on the LWTs for linear and nonlinear
analysis of laminated shells. The LWTs are, however, computation-
ally inefficient like the full 3D FE analysis, since the number of pri-
mary variables increases proportionally with the number of layers.

In order to retain the computational efficiency of the ESL theo-
ries, while allowing for the layerwise distortion of the normal to
the shell surface, efficient layerwise theories (ELTs) have been
developed. In these theories, the layerwise function of the thick-
ness coordinate for the inplane displacements is first superim-
posed with a global function, but the number of unknowns is
finally made layer-independent by imposing the conditions of
transverse shear stresses at the layer interfaces and the prescribed
shear traction conditions at the top and bottom surfaces of the
laminate. Such theories were originally pioneered by Ambart-
sumyan [32] for static and by Rath and Das [33] for dynamic anal-
ysis, but were not followed up for a long time. Their reformulations
with some variations were presented by Di Sciuva [34], Cho and
Parmerter [35] and Shu and Sun [36] for anisotropic laminated
plates. The third order zigzag theory (ZIGT) [35,36] has been shown
to yield very accurate results in comparison with the exact 3D elas-
ticity solutions for static, dynamic and buckling response of thin to
moderately thick highly inhomogeneous composite and sandwich
plates [37,38]. It was extended to shallow laminated shells by
Shu [39] and deep cylindrical shells under thermomechanical load-
ing by Dumir et al. [40].

The first FE implementation of the Ambartsumyan-Rath-Das
type ELT for shell structures is due to Beakou and Touratier [41],
who developed a C1-continuous rectangular element for shallow
laminated shells. Dau et al. [42] has presented a C1-continuous
six-node triangular element for the dynamic analysis of general
multilayered shell structures, based on an ELT with a sinusoidal
global variation and a linear piecewise zigzag variation for the
inplane displacements. Cinefra and Carrera [6] have presented a
nine-node element for static analysis of multilayered cylindrical
shells using a unified formulation containing various ESL and lay-
erwise theories and an ELT using Murakami’s zigzag function
[43]. Eijo et al. [44] and Versino et al. [45] have presented four-
node elements for laminated composite plates and doubly curved
shells, respectively, based on a refined zigzag theory. In this theory,
a zigzag function similar to the Murukami’s function is used, while
relaxing the requirement of interfacial continuity of transverse
shear stress. The formulation, thus, faces the problem of shear

locking which is addressed by using the MITC interpolation of
assumed natural strains.

The third order ZIGTs of the type presented by Cho and Parmer-
ter [35] and Shu and Sun [36] requires C1-continuity, which poses
difficulty in developing simple quadrilateral elements. Kumar et al.
[46] have presented a nine-node C0-continuous isoparametric
quadrilateral element for shallow laminated shells based on the
ZIGT of Cho and Parmerter [35], by treating the derivatives of the
mid-surface deflection, @w0

@x and @w0
@y , as independent variables. This,

however, amounts to modifying the original theory and relaxing
the conditions of zero shear tractions at the top and bottom sur-
faces of the laminate. Kapuria and Kulkarni [47] developed a
four-node quadrilateral element for multilayered anisotropic
plates, based on the ZIGT of Shu and Sun [36], wherein the require-
ment of C1-continuity has been circumvented by using the so
called improved discrete Kirchhoff (IDKQ) technique, originally
proposed by Jeyachandrabose et al. [48], for plate bending ele-
ments. This element was shown to be shear locking free, and yield
very accurate results in comparison with the 3D elasticity based
analytical and FE solutions for static and dynamic response of
composite and sandwich plates of different lay-ups, shapes and
boundary conditions. Comparisons with the other existing ele-
ments established its superiority, in terms of simplicity, accuracy,
computational efficiency and robustness. Inspired by the success
of this discrete Kirchhoff zigzag theory (DKZIGT) plate element, a
four-node quadrilateral element for doubly curved shallow lami-
nated shells was developed by Yasin and Kapuria [49], which again
was shown to yield very accurate results for a variety of shell
geometries, but the formulation and results were presented only
for shallow shells of rectangular planform in which only the pro-
jection on the planform surface was modeled, and not the curved
shell surface. No study has been presented so far on the analysis
of general laminated shell structures (without the shallowness
restriction) based on this accurate ZIGT.

In this paper, a four-node quadrilateral facet element based on
the efficient ZIGT is presented for the static and dynamic analysis
of general laminated shell structures. The original ZIGT based
quadrilateral element of Kapuria and Kulkarni [47] for laminated
plates has four nodes with seven degrees of freedom per node. This
element has been generalized to deep shells, by using an oblique
local reference plane for each element, and employing coordinate
transformation. The local reference plane takes care of the non-
coplanar nodes that may occur in the meshing of shells having
twisting curvature, making the element suitable to model shells
of all shapes. The local coordinate axes are chosen such that they
are nearly parallel to element edges. For the purpose of transfor-
mation of mid-surface rotation and shear rotation variables of
element, two additional drilling degrees of freedom (DOFs) are
introduced. The element mass and stiffness matrices and the load
vector are derived using the Hamilton’s principle. The element is
also first of its kind for general shells based on a theory requiring
C1 continuity even for isotropic shells. The accuracy of the element
is assessed by comparing with the analytical 3D elasticity solutions
and other 2D theory based solutions for stress and free vibration
response of laminated deep shells.

2. Local coordinate system

For a four-node quadrilateral element on a shell surface, the
four corner nodes with position vectors r1; r2; r3 and r4, respec-
tively, may not be coplanar. To maintain the geometric compatibil-
ity in such cases, the element is projected to the plane that passes
through its midpoint rc ¼ ðr1 þ r2 þ r3 þ r4Þ=4and is parallel to the
diagonals d1 ¼ r3 � r1 and d2 ¼ r2 � r4 [50]. The local axes ðx; yÞ for
the element are chosen such that they are nearly parallel to the
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