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a b s t r a c t

The minimum mass designs of state of the art helical circumferential grids are compared to axial helical
grids. Analytical models based on the classical laminate theory deliver optimization results in less than
one second. Using finite element models the obtained results are validated and adjusted in a second opti-
mization step. Studies on the influence of rib heights and Young’s modulus show potential to create
lighter grids in axial helical design than in helical circumferential design. This is shown for medium
length cylinders from relatively low up to very high load levels.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical grid structures have been used in space engineering
since several decades [1]. The main idea is to form a grid of ribs
which acts similar to a continuous shell on a global level but has
a higher specific bending stiffness.

The present paper deals with weight optimization of axial heli-
cal (AH) grids. For comparison optimum results of helical circum-
ferential (HC) grids are presented. Both grid types considered
form triangular patterns (see Fig. 1). By shifting or splitting ribs
other patterns, like hexagonal, develop. Geometric dimensions
and coordinate system of the cylinder are visualized in Fig. 2. Ana-
lytical closed-form solutions for analysis and minimum weight of
HC grids are given in [1]. Axial stiffnesses of the ribs are smeared
to a pseudo layer and the membrane and bending stiffnesses are
calculated using the classical laminate theory (CLT). The good
agreement between analytical models and detailed finite element
(FE) models is documented in [2,3]. In [2] it is also stated that
the theoretical advantage of hexagonal HC grids which halve the
free length of helical ribs between intersection points and thus
increase the local buckling load of the ribs cannot be exploited. It
is compensated by the need to increase the rib height to avoid an
additional failure mode of buckling of the intersection points in
radial direction.

A FE parameter study on hexagonal AH and HC grids with heli-
cal angle fixed at 45� can be found in [4]. Applying stability and

axial stiffness constraints results in a considerably lighter design
for the AH grid. Morozov et al. [5] performed FE parameter studies
on hexagonal HC grids under various loading conditions. Similar
work but considering different grid types was undertaken by [6].
Although parameter studies give an insight into the influence of
certain design variables the maximum potential can only be
assessed by considering optimum designs. Also, the restriction of
design variables must be handled with care. For example, both of
the aforementioned papers assume the same quadratic cross sec-
tions for all rib types. This leads to mass penalties compared to
an optimized design with independent cross section dimensions.

This paper aims to derive and validate an analytical model for
stability and stress analysis of AH grids. With this model AH grids
are optimized for minimum mass. Studying the influence of design
variables and material properties the potential to find lighter con-
figurations compared to HC grids is shown. FE models are used to
validate and adjust the obtained designs in a second stage of opti-
mization. The results are presented for the whole bandwidth of rel-
atively low to very high load levels.

2. Analytical model

It is assumed that the rib spacing is dense enough that the ribs
can be smeared to form a continuous pseudo layer. The pseudo lay-
ers of different rib orientations are then combined using the
assumptions of the CLT. In contrast to a continuous material the
ribs only have axial stiffness. The reduced stiffness matrix in the
local coordinate system reads

Qt;11 ¼ dtEt ; t ¼ a; c; h: ð1Þ
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Here t stands for rib type (a: axial, c: circumferential, h: helical) and
E is the Young’s modulus in longitudinal direction. The relations of
rib widths to spacings are

dt ¼ bt=at; ð2Þ
and the relations of rib heights are

bt ¼ ht=hh: ð3Þ
Furthermore, the relations of mass densities read

qt ¼ qt=qh: ð4Þ
In the above equations t again stands for the rib type. If the grid is
symmetric to the mid-surface the material law reads
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Using the notationbA ¼ A�1 ð6Þ
for the inverse of the membrane stiffness matrix the following non-
dimensional stiffness parameters are defined [7]:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibA11D11bA22D22

vuut ; ð7Þ

g ¼ D12 þ 2D66ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p ; ð8Þ

f ¼ 2bA12 þ bA66
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Fig. 3 visualizes the grid geometries and corresponding vari-
ables. Taking into account the rib angles aa ¼ 0�; ac ¼ 90�, and
ah ¼ �a, the membrane stiffness matrix becomes

A ¼
2hhc4dhEh þ bahhdaEa 2hhc2dhEhs2 0
2hhc2dhEhs2 2hhs4dhEh þ bchhdcEc 0
0 0 2hhs2c2dhEh
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and the plate stiffness matrix
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For brevity the trigonometric functions are written as:
s ¼ sinðaÞ; c ¼ cosðaÞ. As it can be seen from the stiffness matrices,
the axial and circumferential ribs only contribute to the longitudi-
nal and circumferential components, ð Þ11 and ð Þ22, respectively. In
contrast to that, the helical ribs contribute to all populated matrix
elements.

An axial compressive load

Px ¼ 2pRNx ð12Þ
causes rib stresses

ra ¼ Nx

hhbada
; rh ¼ 0; ð13Þ

in case of an AH grid and

rc ¼ � s2Nx

hhc2bcdc
; rh ¼ Nx

2c2hhdh
; ð14Þ

in case of a HC grid.

Fig. 3. Grid geometries and corresponding variables.
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Fig. 1. Isometric view of AH (a) and HC grid (b).

Fig. 2. Cylinder geometry and coordinate system.
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