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a b s t r a c t

This paper presents a general semi-analytical solution for undrained cylindrical and spherical cavity
expansion in Modified Cam Clay (MCC) and subsequent consolidation. The undrained cylindrical and
spherical cavity expansion response in MCC model is obtained through the similarity solution technique.
Then, the subsequent consolidation process around the cavity is governed by the classical partial differ-
ential equation for consolidation. Finite Difference Method (FDM) is selected for solving the consolidation
equation numerically. The proposed semi-analytical solution is validated by comparing the prediction of
the dissipations of the pore pressure with Randolph’s closed-form solution for elastic-perfectly plastic
soil. Parametric study shows that G0/p0

0, R and M have significant influence on the cavity wall excess pore
pressure dissipation curve, while it is not sensitive to the value of m0. It is also found that the negative pore
pressure generates around the expanded cylindrical and spherical cavity wall during the consolidation
process when R > 5 for typical Boston blue clay. The developed solution has potential applications in
geotechnical problems, such as the pile foundation, in-situ test, tunnel construction, compaction grout-
ing, and so forth.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Consolidation around an expanded or contracting spherical or
cylindrical cavity is a classical boundary value problem in geome-
chanics. Since this mechanical model has numerous applications in
geotechnical engineering, such as pile foundation, in-situ test (CPT
test, pressuremeter test), tunnel construction, compaction grout-
ing, it receives extensive concerns and various analytical, semi-
analytical and numerical solutions have been presented in the pre-
vious. The earliest work is contributed by Cryer [4], who proposed
an analytical solution for a poroelastic sphere subjected to an
external radial stress field in the presence of the boundary drai-
nage. In order to investigate the dissipation of the excess pore pres-
sure induced by the pile driving, Randolph and Wroth [9] derived a
closed-form solution for consolidation around a driven pile
(expanded cylindrical cavity), assuming that the soil skeleton
deforms elastically. Later, Carter [1] developed a semi-analytical
solution for the radial dissipation of pore water pressure around

a freshly created, vertical hole and used this solution to capture
the swelling effect around the borehole. Then, Scott [10] studied
the problem of radial consolidation around the radial compres-
sion of a cylinder and a sphere, and expanded cylindrical cavity
in phase-change soil. Subsequently, Zhou et al. [12] presented an
analytical solution for investigating the coupled, linear thermo-
poroelastic fields in a saturated porous medium under radial and
spherical symmetry. More recently, Osman and Rouainia [8] pro-
posed an analytical solution for consolidation around spherical
cavity contraction with the initial excess pore pressure immedi-
ately after the contraction of the cavity evaluated from the cavity
contraction theory using a linear-elastic- perfectly-plastic soil
model.

A review of the previous work shows that the problem of con-
solidation around an expanded spherical cavity and in more
sophisticated soil such as Modified Cam Clay (MCC) model has
not been considered. Although Osman and Rouainia [8] investi-
gated a very similar problem of consolidation around contracting
spherical cavity, his solution is derived based on the assumption
of cavity expansion in linear-elastic-perfectly-plastic soil model.
In addition, Randolph et al.’s closed-form solution for cylindrical
cavity is also derived using the linear-elastic- perfectly-plastic cav-
ity expansion model. Therefore, a new general analytical solution
for the consolidation around expanded cylindrical or spherical

http://dx.doi.org/10.1016/j.compgeo.2017.07.005
0266-352X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Key Laboratory of New Technology for Construction of
Cities in Mountain Area, College of Civil Engineering, Chongqing University,
Chongqing 400045, China.

E-mail addresses: zh4412517@163.com (H. Zhou), hliuhhu@163.com (H. Liu),
zhayahui@163.com (Y. Zha), yinf1988@163.com (F. Yin).

Computers and Geotechnics 91 (2017) 71–81

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/locate /compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2017.07.005&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2017.07.005
mailto:zh4412517@163.com
mailto:hliuhhu@163.com
mailto:zhayahui@163.com
mailto:yinf1988@163.com
http://dx.doi.org/10.1016/j.compgeo.2017.07.005
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


cavity in a more advanced soil model (MCC model) is necessary.
Such an analytical solution provides a theoretical framework for
predicting the dissipation of excess pore pressure around the
expanded cavity, and also provides a valuable benchmark for ver-
ifying the FEM program. In addition, the solution can be used to
interpret the problem of pile foundation, in-situ test, tunnel con-
struction, compaction grouting, and so forth.

2. Basic assumptions and definition of the problem

Fig. 1 shows an initial spherical (or cylindrical, it is not pre-
sented in the figure) cavity with initial radius a0 and an initial uni-
form inner pressure r0 expands to another cavity with radius equal
to a as inner pressure increases from r0 to ra. The soil response is
elastic when the pressure is relatively small. Further increase in the
cavity wall pressure will result in the formation of critical state and
plastic zones around the cavity wall. The soil beyond the plastic
zone is in elastic state and it is defined as elastic zone. rp denotes
the radial position of the elastic-plastic (EP) boundary, which is
occupied by the soil particle initially at rp0. The radius of the critical
state zone is rc. The soil is assumed as homogeneous. The plastic
behavior of the soil is described by the MCC model, while the
elastic behavior is governed by the Hooke’s law. The condition of
cylindrical and spherical symmetry holds in the cylindrical and
spherical cavity expansion respectively and thus cylindrical
and spherical polar coordinate systems are used for cylindrical and
spherical cavity expansion respectively. The initial position of a soil
particle around the cavity wall can be defined as (r0, h) for cylindri-
cal cavity and (r0, h, u) for spherical cavity. Due to the symmetry,
the stresses variable rh and ru for spherical cavity problem are
the same, which is true for the strain and displacement variables.
Under this condition, only the physical variable (stress, strain
and displacement) in r and h directions are necessary to be consid-
ered for spherical cavity, which is similar to cylindrical cavity prob-
lem. In addition, two main assumptions are used in the following
derivation. The first assumption is that the distribution of the
excess pore water pressure immediately after the cavity expansion

can be calculated through the solution for undrained cavity expan-
sion in MCC model. In addition, since the soil is moving back
towards the cavity wall (having been originally displaced outwards
during cavity expansion process) most of soil will go through a pro-
cess of unloading in shear. Therefore, it is reasonable to assume
that during the consolidation process the soil skeleton deforms
elastically and is governed by Darcy’s law. This assumption was
validated by Randolph and Wroth [9] and Carter [1].

3. Solution for undrained cylindrical or spherical cavity
expansion in infinite MCC model

3.1. Definition of basic variables

Following Collins and Stimpson [5], Collins and Yu [6], it is con-
venient to define the two stress variables p0 and q with respect to
the radial and tangential effective stress (r0

r and r0
h) according to:

p0 ¼ r0
r þ kr0

h

1þ k
ð1Þ

q0 ¼ r0
r � r0

h ð2Þ
where k = 1 for cylindrical cavity and k = 2 for spherical cavity.

The corresponding strains ep and eq are written as:

ep ¼ er þ keh ð3Þ

eq ¼ k
1þ k

ðer � ehÞ ð4Þ

Based on the strain-displacement relation, the radial strain (er) and
tangential strain (eh) are expressed as:

er ¼ � @u
@r

ð5Þ

eh ¼ �u
r

ð6Þ

where u is the radial displacement and r is the radial position.

Nomenclature

a0 initial radius of spherical cavity
a radius of expanded spherical cavity
c conventional one-dimensional consolidation coefficient
e void ratio
G shear modulus of soil
K bulk modulus of soil
M slope of the critical state line;
p0 mean effective stress
p0c yield pressure under isotropic compression
q0 initial deviator stress
q deviator stress
rp radial position of the elastic-plastic (EP) boundary
rc radius of the critical state zone
(r, h) polar coordinate variables
(r, h, u) spherical coordinate variables
(r0, h) initial position of a soil particle around the cylindrical

cavity wall
(r0, h, u) initial position of a soil particle around the spherical

cavity wall
R overconsolidation ratio
u radial displacement
u0 initial pore pressure
uw pore pressure
m0 effective Poisson’s ratio
w radial velocity component of soil particle

W velocity at the elastic-plastic boundary
r0 initial stress
ra cavity wall pressure
rr, rh and ru stress components in spherical coordinate system
rr, rh stress components in cylindrical coordinate system
ep volumetric strain
eq shear strain corresponding to deviator stress
er, eh strain components in polar coordinate system
m0 effective Poisson’s ratio
j slope of unloading-reloading line in t-ln p0plane
t specific volume
t0 initial specific volume
k slope of normal compression line in t-ln p0 plane
C specific volume at unit p0 (kPa) on the critical state line

in t-ln p0 plane
g similarity variable

Notional meaning of superscripts and subscripts
0 effective
p at the elastic-plastic boundary
mv volume compressibility and is equal to 2G(1 � m)/

(1 � 2m)
kw permeability of the soil
cw unit weight of water
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