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a b s t r a c t

Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation
(PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equa-
tion is nearly neglected in hydrology and petroleum engineering problems such as well test analysis.
When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess
a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this param-
eter can result in high errors. Previous models basically focused on numerical and semi-analytical meth-
ods for semi-infinite domain. To the best of our knowledge, no analytical solution has yet been developed
to consider the quadratic terms in diffusivity PDE of one-dimensional unsteady state fluid flow in rectan-
gular coordinates and finite length.
Due to the resulting errors, the nonlinear quadratic term should also be considered in the governing

equations of fluid flow in porous media. In this study, the Fourier transform is used to model the one-
dimensional fluid flow through porous media by considering the quadratic terms. Based on this assump-
tion, a new analytical solution is presented for the nonlinear diffusivity equation.
Moreover, the results of linear and nonlinear diffusivity equations are compared considering the quad-

ratic term. Finally, a sensitivity analysis is conducted on the affecting parameters to ensure the validity of
the proposed new solution. The results demonstrate that this nonlinear PDE is also applicable for hydrau-
lic fractured wells, and well test analysis of fractured reservoirs.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Pore pressure distribution in a single phase porous media is
highly important for researchers in the fields of hydrology and pet-
roleum reservoir engineering and also applicable for well testing
analysis. This pressure distribution which has received particular
interest in geophysical science, is obtained based on the transient
fluid flow through porous media by diffusivity equation in a
nonlinear form [1–3].

Due to the compressibility of fluids, a quadratic pressure
gradient term appears in the governing PDE, which leads to high
nonlinearity in diffusivity [4].

Many researchers have solved this equation by neglecting the
nonlinear part of the equation to linearize it for various boundary
conditions. This approach has been widely used in pressure tran-
sient analysis of porous media for small pressure gradient condi-
tions; however, in many actual field applications, the working

pressure of injection fluid into porous media is high enough that
linear form of diffusivity equation deviates from the reality. Such
application can be observed in many reservoir operations such as
hydraulic fracturing, large drawdown flows, slug testing, drill-
stem testing, and large pressure pulse testing [5,6]. In these cases,
the nonlinear form of pressure distribution equation should be
applied through the quadratic pressure gradient term to eliminate
the errors rising from the linearization. Even though the impor-
tance of this nonlinear pressure term has been noticed in well test
applications, modern well test analysis does not consider its
impact on their interpretation [7].

Odeh and Babu [8] used the analytical solution of nonlinear dif-
fusivity equation in three categories including constant rate inner
boundary, infinite outer boundary and no wellbore storage effects.
Their findings indicate that for the most of the reservoir engineer-
ing processes, linear form of the PDE can be used directly with
small errors without quadratic pressure gradient term. However,
in the case of high pressure injection, linear form of PDE causes
high deviation from the reality and thus the quadratic term should
be considered in the equation to solve it more accurately.
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Finjord and Aadnoy [9] presented steady state and pseudo
steady state solutions of nonlinear pressure distribution equations
to determine the wellbore pressure. Logarithmic transformation
was introduced to present wellbore pressure solutions to the non-
linear problem. Several other authors followed similar approaches
in their studies [6,8,10].

Later on, Wang and Dusseault [11] worked on this solution to
provide boundary conditions by linearizing the PDE in terms of
density. This approach was similar to those presented by Muskat
[12].

Renshi et al. [13] derived the quadratic pressure gradient equa-
tion for dual porosity reservoirs. They concluded that this nonlin-
ear term affects the transient well test analysis of naturally
fractured reservoirs. This influence draws more attention in the
type curve analysis of fluid flow behavior in low permeability, thin
bed and heavy oil reservoirs.

Guo et al. [14] introduced a semi-analytical approach to solve
nonlinear flow model for liquids and utilized a numerical method
to solve nonlinear equation of gas flow in underground reservoirs.
It was shown that the nonlinearity effect in flow equation increases
as either the time passes or nonlinear coefficient increases, and is
more significant in low permeable heavy oil-bearing reservoir.

Wang et al. [15] developed a transient solution of nonlinear
fluid flow equation for multiple zone composite reservoirs and
matched the results with real well test data of a sandstone
reservoir.

Liu et al. [16] expressed that existence of nonlinear term in the
flow equation results in more pressure drop than the predicted
value by neglecting the nonlinear term. This phenomena was also
observed in the study carried out by Li [17].

In this study, an analytical solution is presented to solve the
nonlinear PDE of unsteady state diffusivity equation in linear
geometry of porous media during either production or injection
of compressible fluids. Two types of inner boundary conditions
including constant pressure and constant rate are investigated.
Finite, close, and constant charge are chosen as outer boundary
conditions. While previous studies solved diffusivity equation with
quadratic gradient term in the infinite acting reservoirs, closed
boundary reservoirs which are closer to the reality with finite drai-
nage area, are considered to be solved in this study. In addition,
they have studied nonlinear equations geometry of radial flow in
reservoirs. Cartesian coordinate corresponding to the orthogonal
cross sectional area for fluid flow is another geometry of fluid flow
in porous media, especially in linear flow of near fracture medium.
In this study, Cartesian coordinate is considered as the base to
solve the nonlinear flow equation in porous media.

2. Mathematical expression of the phenomena

Fluid flow equation of compressible fluid in linear geometry of
porous media including the effect of quadratic pressure gradient
term is presented below. This equation has been derived in appen-
dix which is similar to the derivation process reported by Stewart
[18,19].
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In which P is the fluid pressure through porous media, x is the
horizontal coordinate, cf is the fluid compressibility, ct is the total
system compressibility, l is the fluid viscosity, n is the porosity,
K is the absolute permeability, and t is the time. Quadratic term
in Eq. (1) has been neglected in linear analyses of previous studies
due to the small pressure gradient assumption and small com-
pressibility of the liquid [4]. This term should be considered during
high production rates of compressible liquid corresponding to the
high pressure gradient, without which lots of errors are caused in
predicting the reservoir behavior.

The linear flow regime associates to the fluid flow around the
induced hydraulic fracture in the porous media. In Fig. 1, a vertical
fracture extended around the vertical well in a tight gas reservoir
has been shown. The fracture medium is assumed to be of
infinite-conductivity which corresponds to no pressure drop along
the fracture surface.

In this study, the nonlinear PDE of fluid flow for linear geometry
of porous media considering the effect of quadratic term has been
solved with two different boundary conditions:

2.1. Constant wellbore flowing pressure case

In order to solve this nonlinear PDE equation, the following
variable changes are used to transfer the governing equation to
the dimensionless form [18,21–23]:

Nomenclature

Ac cross section area [m2]
erfc complementary error function
cf formation compressibility [psi�1]
ct total compressibility [psi�1]
cn series coefficient
h reservoir thickness [m]
K rock absolute permeability [md]
L reservoir length [m]
n rock porosity
P pressure [psi]
q wellbore flow rate [m3/day]
t time [s]
w variable change term
xf fracture half-length [m]

x horizontal coordinateR xD¼1
xD¼0 sinðkmxDÞdxD integral factor

Greek
l fluid viscosity [cp]
k eigenvalue

Subscripts
D dimensionless
i initial
ss steady state
w well
uss unsteady state

Fig. 1. Schematic of hydraulic fractured well in a linear reservoir [20].
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