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a b s t r a c t

This paper aims to provide a stochastic response surface method (SRSM) that can consider non-Gaussian
dependent random variables under incomplete probability information. The Rosenblatt transformation is
adopted to map the random variables from the original space into the mutually independent standard
normal space for the stochastic surrogate model development. The multivariate joint distribution is
reconstructed by the pair-copula decomposition approach, in which the pair-copula parameters are
retrieved from the incomplete probability information. The proposed method is illustrated in a tunnel
excavation example. Three different dependence structures characterized by normal copulas, Frank cop-
ulas, and hybrid copulas are respectively investigated to demonstrate the effect of dependence structure
on the reliability results. The results show that the widely used Nataf transformation is actually a special
case of the proposed method if all pair-copulas are normal copulas. The effect of conditioning order is also
examined. This study provides a new insight into the SRSM-based reliability analysis from the copula
viewpoint and extends the application of SRSM under incomplete probability information.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There is an intrinsic uncertainty associated with the properties
of geo-materials, and deterministic approaches to the stability
analysis for geotechnical engineering cannot take these uncertain-
ties into consideration. To address this problem, probabilistic
methods, such as the first/second-order-order reliability method
(FORM/SORM) and Monte Carlo simulation (MCS), have received
a great deal of attentions because they are not only capable of han-
dling uncertainty but also have the potential to support rational
decision-making from a risk perspective [1].

One major challenge when applying FORM/SORM or MCS is to
define the limit state function. Due to the complex underground
conditions, the structure response has to be investigated using
numerical approaches in many cases, which results in an implicit
limit state function. To represent the limit state function in an
explicit form, the response surface method (RSM) is widely
adopted [2]. Various techniques, such as quadratic polynomials,

artificial neural networks and support vector machines, are used
to construct the response surface (e.g., [3–6]).

Unlike conventional deterministic RSM, the stochastic RSM
(SRSM) uses polynomial chaos expansion (PCE) to model the
input-output relationships in the standard random space [7]. The
approximation by SRSM is accomplished by determining the coef-
ficients associated with the PCE, which can be achieved by a prob-
abilistic collocation method [8–10]. Generally, the approximation
by PCE is valid across the entire random space [11], which is the
major difference between the SRSM and the deterministic RSM.
Li et al. [12] further extended the SRSM to consider correlated
non-normal input variables for geotechnical reliability analysis
by using the Nataf transformation [13].

It has been acknowledged that the Nataf transformation inher-
ently assumes a Gaussian dependence structure for correlated
multivariates [14]. From the copula viewpoint, it adopts a normal
copula to characterize the underlying dependence structure
[15,16]. However, recent investigations have demonstrated that
this assumption does not always hold [17]. For non-Gaussian
dependence structure cases, other copula functions should be used
[18–20]. Unfortunately, in many reliability problems, the
probabilistic description of the random vector is given in terms
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of marginal distributions and correlations (referred to as the
incomplete probability information [13]). Under such condition,
the joint distribution cannot be uniquely determined because the
dependence structure is not known [14,17,21]. In other words,
the reliability evaluation based on Nataf transformation (normal
copula) is only one of the various possible solutions.

To consider non-Gaussian dependent random variables under
incomplete probability information, the joint distribution is con-
structed based on non-normal copulas with its parameter related
to the correlation coefficient [14,17,19,20,22,23]. Since the depen-
dence structure is unknown, there is no guideline on the copula
selection. Several works [17,22–24] have examined the impact of
different copulas on the reliability evaluations, and it is concluded
that the results could be differed in a non-trivial way under differ-
ent selections of copula. However, most of the extant studies are
restricted to the bivariate cases [14,17,22–24]. If more than two
random variables are mutually correlated, it is difficult to establish
a one-to-one relationship between the pair-wise correlation coeffi-
cients and the multivariate copula parameters because their num-
bers are generally not equivalent [14]. This limitation can be
attributed to the inflexibility of the conventional multivariate cop-
ulas in representing multivariate joint distributions with complex
dependence structure.

Recently, construction of multivariate joint distribution by pair-
copulas has drawn great attentions because it is highly flexible in
modeling complex patterns of dependence by taking bivariate cop-
ulas as building blocks [25–28]. In this study, the pair-copula
decomposition approach is adopted to represent the multivariate
joint distribution. As a result, the number of pair-copula parame-
ters is equivalent to the pair-wise correlation coefficients so that
it is possible to relate them one by one. After the construction of
the multivariate joint distribution, the Rosenblatt transformation
[29] is used to establish a mapping relationship between the orig-
inal space and the mutually independent standard normal space
(i.e., U-space) for the SRSM model development. The proposed
method is illustrated in a tunnel excavation example and it is com-
pared to the SRSM with the Nataf transformation. The aim of this
paper is to extend the SRSM to correlated multivariates with any
dependence structure under incomplete probability information.

2. Collocation-based stochastic response surface method

2.1. Stochastic response surface method

In the SRSM, Hermite polynomials are widely adopted for
functional approximation. Suppose that Y is the output random
variable (i.e., system responses) and X ¼ ½x1; x2; . . . ; xn� is the
n-dimensional input random variable vector represented by a vec-
tor of independent standard normal variables U ¼ ½U1;U2; . . . ;Un�
as X ¼ TðUÞ. Then, the limit state function can be written as:

Y ¼ GðXÞ ¼ GðTðUÞÞ ¼ HðUÞ ð1Þ

Using the Hermite polynomials, Y ¼ HðUÞ can be written as:

Y ¼ a0 þ
Xn
i1¼1

ai1C1ðUi1 Þ þ
Xn
i1¼1

Xi1
i2¼1

ai1 i2C2ðUi1 ;Ui2 Þ

þ
Xn
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1 i2 i3C3ðUi1 ;Ui2 ;Ui3 Þ þ . . . ð2Þ

where ai1 i2 ...in are unknown coefficients, and Cpð�Þ is the multi-
dimensional p-order Hermite polynomials given by:

CpðUi1 ; . . . ;Uip Þ ¼ ð�1Þpe1
2U

TU @p

@Ui1 ; . . . ; @Uip
e�

1
2U

TU ð3Þ

Generally, the accuracy of approximation by Eq. (2) increases as
the order p increases; however, higher order Hermite polynomials
will incur a rapid increase of expansion terms. Hence, Eq. (2) is
truncated at a specific order to achieve an accurate approximation,
while the workload of deriving algebraic expressions is acceptable.
For reference, Table 1 summarizes the closed-form of Eq. (2) from
order 2 to 4.

Li et al. [12] summarizes the four major steps for establishing a
stochastic surrogate model: (1) represent the input random vari-
ables by the independent standard normal random variables; (2)
represent the output using the Hermite polynomials; (3) deter-
mine the coefficients associated to the Hermite polynomials using
the collocation method; and (4) estimate the failure probability by
available reliability techniques, e.g., MCS or FORM/SORM. The first
step is critical particularly for correlated non-normal input random
variables because the valid representation generally requires a
nonlinear transformation from the original space to the U-space
[12]. In Section 3, this transformation will be discussed in detail
for correlated multivariates with non-Gaussian dependence
structure.

2.2. Selection of collocation points

The unknown coefficients ai1 i2 ...in can be determined by the
stochastic collocation method [30]. Similar to the deterministic
collocation method, the roots of the next higher order Hermite
polynomial are used as the stochastic collocation points. Then,
the system responses are evaluated (e.g., by numerical
approaches), and the coefficients are computed by:

a ¼ ðHTHÞ�1
HTF ð4Þ

where H and F are the matrix of Hermite polynomials and the vec-
tor of system responses at the collocation points, respectively, and a
is the coefficient vector to be solved.

For n-dimensional problems, the candidate collocation points
for p-order polynomials are the combinations of the (p + 1)-order
Hermite polynomial roots. Note that the origin should be incorpo-
rated if it is not a collocation point because it captures the region of
high probability in the standard normal space [7–9]. Thus, the
number of candidate collocation points is:

Ncp ¼ ðpþ 1Þn; if p is even
ðpþ 1Þn þ 1; if p is odd

(
ð5Þ

If all the candidate collocation points are adopted to determine
the polynomial coefficients, a relatively large number of real model
runs have to be implemented, particularly when n and p are high.
The minimum number of collocation points needed to determine
the coefficients is:

Na ¼ ðnþ pÞ!
n!p!

ð6Þ

Generally, Na � Ncp. Thus, the number of realizations can be
reduced if the collocation points are selected appropriately. Li
et al. [12] noted that the collocation points should be selected to
ensure that the Hermite polynomial matrix H has a full rank.

3. Transformation for correlated multivariates with non-
Gaussian dependence structure under incomplete probability
information

In engineering practice, correlations may exist among various
random variables [31]. For example, the Young’s modulus can be
simultaneously correlated with the uniaxial compressive strength
and the geological strength index of rock mass [32]. To consider
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