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Impact of sample size on geotechnical probabilistic model identification
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a b s t r a c t

This paper aims to investigate the impact of sample size on geotechnical probabilistic model identifica-
tion. First, the copula approach is presented to model the bivariate distribution of geotechnical parame-
ters. Thereafter, the AIC scores are adopted to identify the best-fit marginal distribution and copula.
Second, the variation of AIC scores because of small sample size is investigated using simulated data.
Finally, the impact of the variation of AIC scores on identification of the best-fit marginal distribution
and copula is examined. The minimum sample sizes for geotechnical data are also suggested to obtain
a correct identification of the probabilistic models. The results indicate that the AIC scores estimated from
a small sample exhibit large variation. The variation of the AIC scores has a significant impact on prob-
abilistic model identification. The marginal distributions and copulas have a low percentage of correct
identification when sample size is small. The percentages of correct identification for the marginal distri-
butions and copulas increase with increasing sample size. The correlation coefficient between geotechni-
cal parameters has a much larger impact on probabilistic model identification than the COV of
geotechnical parameters. The suggested minimum sample sizes for geotechnical data are useful for guid-
ing practical geotechnical site investigation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the probabilistic models (i.e., marginal dis-
tribution for single parameter or joint probability distribution for
multiple correlated parameters) for geotechnical parameters are
essential inputs for geotechnical reliability analysis and risk assess-
ments [27,3,8,22]. It is also widely accepted that there exist many
examples for correlated geotechnical parameters in the literature
(e.g., [14,26,9,6,5,34]). For example, the cohesion and friction angle
of soils and rocks are commonly assumed negatively correlated
[14,15,28–30,33,36]. The two curve-fitting parameters in a load-
settlement curve of piles [9,16,17,12], and curve-fitting parameters
in a soil-water characteristic curve [26] also have a strongly nega-
tive correlation. Furthermore, multiple soil parameters can be cor-
related with each other [4,6,5]. To achieve a realistic evaluation of
geotechnical reliability and risk, the joint probability distribution
of these parameters should be constructed.

Recently, the copula approach (e.g., [25]) provides a general and
flexible way for modeling the joint probability distribution of cor-
related geotechnical parameters (e.g., [16–18,29,30,33,12,36,35]).
In probability and statistics, a copula refers to a function that links

a joint probability distribution to its one-dimensional marginal
distributions. There are many copulas in the literature to charac-
terize the dependence structure among variables such as Gaussian,
t, Plackett, Frank, Clayton and Gumbel copulas (e.g., [25]). It is also
clear that there is a variety of marginal distributions to describe
the probabilistic properties for single variables such as normal, log-
normal, Gumbel, Weibull and beta distributions (e.g., [2]). The cop-
ula approach constructs the joint probability distribution of
geotechnical parameters by combing their marginal distributions
with a copula function. In this study, probabilistic models refer
to the marginal distributions and copula used to construct a joint
probability distribution. Note that probabilistic models are
uniquely characterized by their parameters and types. There are
many methods available in the literature for estimating parame-
ters in probabilistic models such as the method of moments, the
maximum likelihood estimation (MLE) [2], and the Bayesian
approach [31,32]. Different from the method of moments and
MLE using geotechnical data only, the Bayesian approach uses both
geotechnical data and prior information such as engineering judge-
ment, local experience and published studies and reports to pro-
duce an estimation of the parameters [31,32]. Furthermore, the
best-fit type of probabilistic models are usually identified using
AIC scores [1] and goodness of fit (GOF) tests such as the
Kolmogorov-Smimov (K-S) test, Anderson-Darling (A-D) test and
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Chi-square (v2) test from a pool of candidate probabilistic models
(e.g., [21]).

According to statistics, the derived probabilistic models using
the aforementioned approaches are accurate only when the sample
size of geotechnical data is infinitely large. In geotechnical practice,
geotechnical data are often of small sample size. The sample size of
geotechnical data in a specific site is typically less than 30 for com-
mon geotechnical parameters [27,31,32,7]. The sample statistics
estimated from a small sample exhibit large variation, which will
induce uncertainty in the derived probabilistic models. In other
words, the identified marginal distributions and copula based on
a small sample may be incorrect [19,20]. In the literature, there
are few studies that focus on characterizing the uncertainty in
probabilistic models. Recently, Li et al. [19,20] proposed a boot-
strap method to model the variation of the AIC scores and charac-
terize the uncertainty in probabilistic models for geotechnical
reliability analysis. However, the studies by Li et al. [19,20], only
focused on a specified sample size. The impact of various sample
sizes on probabilistic model identification has not been investi-
gated. Furthermore, the question that what sample size is suffi-
cient to obtain a correct identification of probabilistic models has
not been answered.

This paper aims to investigate the impact of sample size on
geotechnical probabilistic model identification. To achieve this
goal, this article is organized as follows. In Section 2, the copula
approach is presented to model the bivariate distribution of corre-
lated geotechnical parameters. Thereafter, the AIC is presented to
identify the best-fit marginal distribution and copula. In Section 3,
the variation of the AIC scores for various marginal distributions
and its impact on marginal distribution identification is investi-
gated. The minimum sample sizes are suggested to obtain a correct
identification of the best-fit marginal distribution. The variation of
the AIC scores for various copulas and its impact on copula identi-
fication is presented in Section 4. The minimum sample sizes to
obtain a correct identification of the best-fit copula are also sug-
gested. Some discussions are provided in Section 5.

2. The copula approach for modeling a bivariate distribution

2.1. The copula approach

Let F(x1, x2) be the joint cumulative distribution function (CDF)
of two geotechnical parameters, X1 and X2. The marginal CDFs of X1

and X2 are denoted as F1(x1) and F2(x2), respectively. According to
Sklar’s theorem (e.g., [25]), F(x1, x2) can be expressed in the follow-
ing general form:

Fðx1; x2Þ ¼ CðF1ðx1Þ; F2ðx2Þ; hÞ ¼ Cðu1;u2; hÞ ð1Þ
where C(u1, u2; h) is a bivariate copula function, and h is a copula
parameter describing the dependency between X1 and X2. As shown
in Eq. (1), F1(x1) and F2(x2) are usually denoted as u1 and u2 ranging
from 0 to 1. Therefore, both u1 and u2 are standard uniform vari-
ables, and C(u1, u2; h) is essentially a bivariate probability distribu-
tion on [0, 1]2 with uniform marginal probability distributions on
[0, 1]. By taking derivatives of Eq. (1), the joint probability density
function (PDF) of X1 and X2, f (x1, x2), can be obtained as:

f ðx1; x2Þ ¼ @2CðF1ðx1Þ; F2ðx2Þ; hÞ
@F1ðx1Þ@F2ðx2Þ

@F1ðx1Þ
@x1

@F2ðx2Þ
@x2

¼ cðF1ðx1Þ; F2ðx2Þ; hÞf 1ðx1Þf 2ðx2Þ
¼ cðu1;u2; hÞf 1ðx1Þf 2ðx2Þ ð2Þ

where f1(x1) and f2(x2) are the marginal PDFs of X1 and X2, respec-
tively; c(u1, u2; h) is the bivariate copula density function associated
with the bivariate copula function C(u1, u2; h), which is given by

cðu1;u2; hÞ ¼ @2Cðu1;u2; hÞ=@u1@u2 ð3Þ
Sklar’s theorem states that a joint probability distribution can

be expressed in terms of a copula function and its marginal distri-
butions. Given the marginal distributions of X1 and X2, and the cop-
ula function describing the dependence structure between X1 and
X2, the joint CDF and PDF of X1 and X2 can be obtained by using
Eqs. (1) and (2). For example, assuming both X1 and X2 are nor-
mally distributed, their marginal CDFs, F1(x1) and F2(x2), can be
respectively written as [2]:

F1ðx1Þ ¼ u1 ¼ U
x1 � l1

r1

� �
ð4Þ

and

F2ðx2Þ ¼ u2 ¼ U
x2 � l2

r2

� �
ð5Þ

where U(�) is the univariate standard normal distribution function;
l1 and r1 are the mean and standard deviation (SD) of X1; l2 and
r2 are the mean and SD of X2. Similarly, assuming the dependence
structure between X1 and X2 can be characterized by a Frank copula,
its copula function, C(u1, u2; h), has the following functional form:

Cðu1;u2; hÞ ¼ �1
h
ln 1þ e�hu1 � 1ð Þ e�hu2 � 1ð Þ

e�h � 1

� �
ð6Þ

Then, substituting Eqs. (4)–(6) into Eq. (1), the joint CDF, F(x1,
x2), of X1 and X2 can be obtained as:

Fðx1;x2Þ ¼�1
h

� ln 1þ e
�hU

x1�l1
r1

� �
�1

 !
e
�hU

x2�l2
r2

� �
�1

 !,
e�h �1
� 	" #

ð7Þ
Therefore, modeling the joint probability distribution of X1 and

X2 using the copula approach includes the following decoupled
tasks: (1) determining the marginal distributions of X1 and X2,
and (2) selecting a copula to describe the dependence structure
between X1 and X2. The above two tasks using the data of X1 and
X2 are detailed below.

2.2. Identification of the best-fit marginal distribution using AIC score

In geotechnical practice, the normal distribution truncated
below zero (referred to as TruncNormal hereafter), lognormal dis-
tribution, and beta distribution are commonly adopted to fit the
marginal distributions of geotechnical parameters (e.g.,
[33,21,19,20]). In this study, the above three distributions are
selected as the set of candidate distributions to fit the marginal dis-
tributions of X1 and X2. These three distributions can ensure that
the simulated data of X1 and X2 are positive, satisfying the require-
ments of positive geotechnical parameters [27]. Table 1 gives the
PDFs, f(x; p, q), for the three distributions, where (p, q) is a pair
of distribution parameters. Note that parameters, a and b, in the
PDF of the beta distribution are the lower bound and upper bound,
and are set as zero and infinity in this study, respectively. The
choice of zero and infinity as the lower bound and upper bound
of the beta distribution is to model an arbitrary positive parameter.
In general, the bounds should be chosen according to the physical
bounds of the modeled parameter. For example, if the modeled
parameter is related to the friction angle of soils and rocks, then
the maximum value (upper bound) should be 90� instead of
infinity.

Note that the mean and SD of a distribution will change when
truncation is performed because the corresponding density also
changes. In mathematics, there are two ways to express a trun-
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