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a b s t r a c t

This paper develops a joint deformation tensor (JD), which considers all of the joint’s mechanical and geo-
metrical parameters that affect the deformability of the rock mass. The method based on JD (JD method)
and an elastic deformation anisotropy index (EDAI) are deduced for estimating the spatial anisotropy
deformation of a jointed rock mass. The numerical modeling and in situ true triaxial compressive exper-
iments well verified the effectiveness of the EDAI and JD method for the rock mass containing one joint
set, orthogonal joint sets or the rock mass containing any types of joint network with unity stiffness ratio.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Theoretical demonstration and accumulated practice indicate
that joints exert a dominant effect on the overall response of a rock
mass because the general rock mass consists of two major compo-
nents: the intact rock matrix and the complicated joint network
[1–5]. At the 12th ISRM International Congress on Rock Mechanics
in 2011, Barton emphasized that ‘‘jointed and anisotropic water-
bearing rock masses most frequently represent the reality of engi-
neering in rock” [6]. Structural joints clearly play the key role in the
mechanical response of a rock mass; the deformational estimation
of a jointed rock mass is still one of the most practical assumptions
to be made for analyzing the stress and strain of the rock medium
[7–9]. The general rock mass behavior may be assumed to be of
equivalent isotropy in deformation, and it has been implemented
in many geotechnical engineering applications [10–14]. Neverthe-
less, a discontinuous rock mass must be considered as an anisotro-
pic material most of the time when the joint sets inside the rock
mass are distributed along a few principal directions [15–19].

To make such an analysis successful, an analytical method that
describes the joint network in space and presents the deforma-
tional anisotropy of an engineering rock mass is an important sub-
ject in rock mechanics. A general direct method for presenting the
joints in a rock mass is the discontinuous method, examples of

which include the distinct element method, manifold method,
and discontinuous deformation analysis et al. [20–23]. Joints in
the discontinuous modes are costly in terms of computer memory
and speed, so it is difficult to apply those methods for direct com-
putation of the large-scale engineering rock mass with abundant
joints currently.

Thus, the continuum methods, which treat a rock mass as an
equivalent continuum material with the anisotropic property, are
still widely accepted. Many studies have discussed the analytic
deformation solution for a jointed rock mass based on the contin-
uous method, which treats rock masses as a continuum with
equivalent material properties. For example, following the produc-
tive works of Singh [24], Amadei and Goodman [25], Fossum [26],
Yoshinaka and Yamabe [27] and Wu [28] are regarding the equiv-
alent elastic modulus, shear modulus and Poisson ration for jointed
rock masses, Li et al. [29] recently developed an analytical formula
for the compression transmitting coefficient and the shearing
transmitting coefficient, Kim [30] suggested a mechanical stiffness
tensor by driving local or global mechanical compliance tensors
using coordinate transformation on the basis of Hooke’s law, Tang
et al. [31] presented a model to determine equivalent deformabil-
ity parameters through regular and irregular fractures in a rock
mass, and Wang and Huang [32] built a stress-strain relation for
a rock mass containing multiple joint sets. These methods for
deducing the elastic deformation matrix of rock mass always use
the advantages of the generally elastic superposition principle
which are not intuitive for describing the spatial anisotropy
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deformation property of the rock mass with various joint networks.
Oda [33] once suggested a crack tensor for representing spatial
fractures. This crack tensor, which can integrate all the mazy frac-
tures and joints into a simple second-order tensor via the tensor
product operation of the joint orientation vector, is well suited
for numerical implementation using finite element methods.

In this paper, we develop Oda’s original geometrical crack ten-
sor and present a joint deformation tensor (JD) to demonstrate
the spatial deformation properties of the jointed rock mass. The
joint deformation tensor includes not only the spatial geometric
parameters of the joints (i.e., size, persistence ratio and orienta-
tion) but also the mechanical parameters of the joints (i.e., normal
and shear stiffness). A corresponding method based on the joint
deformation tensor (JDmethod) for calculating the equivalent elas-
tic compliance tensor and a single index for estimating the aniso-
tropic properties are also put forward for the jointed rock mass.
The joint deformation tensor developed here realizes the expres-
sion for the deformation characteristics of the joint network in
the rock mass with a succinct manner, which leads to a new
approach for building a strict stress-strain constitutive model for
jointed rock mass based on measurable parameters.

2. Joint deformation tensor

2.1. Expressions of the joint deformation tensor

A systemic expression for the distributed 3D joints is key for
estimating the deformational property of a rock mass because
the joints are originally factored for the deformation anisotropy
of natural geomaterials. Therefore, Oda presented a fabric tensor
for discontinuous geological materials. Oda’s method integrated
all the respective geometrical characteristics of cracks (i.e., density,
size and orientation) into a quantitative tensor using tensor prod-
ucts of each crack’s position vector, as shown in Eq. (1) [34]. The
advantage of Oda’s tensor is that a single variable combines all of
the geometric properties of cracks in a logical manner. Thus, this
quantitatively geometrical expression (F) provides us with a basis
for deducing a mechanical deformation tensor for the jointed rock
mass.

F ¼ pq
4

Z 1

0

Z
X
r3n� n� � � � � nEðn; rÞdXdr ð1Þ

where q is the crack density, which is defined as q = m(V)/V;m(V) is a
number of cracks whose centroids are located in a volume V; r is the
equivalent diameter of the cracks; n is the positional vector of a
crack; E (n, r) is the joint probability density function of a crack’s
equivalent diameter and orientation vector; X is the whole solid
angle (4p) equivalent to a unit sphere.

This fabric tensor in Eq. (1) accounts for the density, size and
orientation of the cracks, but it cannot represent the actual
deformability property by which the spatial cracks directly affect
the equivalent anisotropic elastic deformation of the rock mass
because Oda’s crack tensor is only a structural representation.
For the elastic constitutive equation of a rock mass containing an
intact rock matrix and joints, an enhancement based on the fabric
tensor is necessary for building an explicit expression of the spatial
distribution of the joint network and integral deformation
response of the joints. Thus, a deformational stiffness coefficient
(JF) is introduced into Eq. (1) by utilizing Boltzmann’s superposi-
tion principle for the linear-elastic stress-strain model [25,35,36].
The new mechanical tensor (JD) is embodied as a deformation ten-
sor with a symmetric second-order format, as shown in Eq. (2).
Because JD includes a joint’s mechanical deformation parameters

(i.e., normal stiffness and shear stiffness) and geometrical parame-
ters (i.e., density, size and orientation), it characterizes the inte-
grated deformation capability of all the joint networks inside a
rock mass (see Fig. 1). The dimension of the JD is m�1 and it can
be interpreted as the tensor representation of the weakening coef-
ficient of a joint system’s basic elastic stiffness when unit elastic
deformation of a rock mass takes place, induced by the joint den-
sity, size, orientation and different deformation stiffness.

JD ¼ pq
4

Z
X

Z 1

0

Z 1

0
r2 � 1

JF
� n� n � Eðr; JF;nÞdrdJFdX ð2Þ

where q is the volumetric density of joints; JF is a joint’s deforma-
tional stiffness coefficient defined by Eq. (3); E (r, JF, n) is the joint
probability density function of the joint’s size, stiffness coefficient
and orientation vector.

JF ¼ kn=kn0 ¼ ks=ks0 ð3Þ
where kn0 and ks0 are the fiducial normal stiffness and shear stiff-
ness, respectively, with the assumption of equal stiffness ratios.

The random characteristics of a natural joint, described with the
joint probability density function in Eq. (2), can be simplified as the
individual probabilistic density function as Eq. (4) if we assume
that the parameters of joints show little related relation in Correla-
tion Test [37–40].

JD ¼ pq
4

Z
X

Z 1

0
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JF
� n� n � EðrÞ � EðJFÞ � EðnÞdrdJFdX ð4Þ

where E(r), E(JF) and E(n) are the probability density functions of
the equivalent diameter, stiffness coefficient and orientation vector,
respectively.

In the research area, if every joint information is available
through in situ measurement, the parameters of each joint can be
used to replace their expression with probability density function
in Eqs. (2) and (4). As a result, an accumulation format of the joint
deformation tensor can obtained via discretization, as shown in Eq.
(5).

JD ¼
XmðVÞ

k¼1

1
V
� sðkÞ � 1

JFðkÞ n
ðkÞ � nðkÞ ð5Þ

where k is the serial number of joints; JF(k) and n(k) are the stiffness
coefficient and orientation vector of the kth joint, respectively; and
s(k) is the area of the joint, which is equal to p(r(k))2/4.

All the geological discontinuities originated from crustal his-
torical formation activities along special compression and ten-
sion directions; thus, the rock mass’s regnant joint sets, the
planes of which are approximately parallel to each other in
every set, show a general regular pattern [15,17,41]. Reorganiza-
tion of the joints through geologic investigation and stereo-
graphic projection to obtain the regnant joint sets is an
effective way of grasping the main spatial characteristics of a
joint network [42–44]. For a rock mass with regular joint sets,
the geometrical parameters of the joints include the joint spac-
ing (Sg

m), joint persistence ratio (p(g)), orientation vector (n(g))
in each joint set. For the non-persistent joint sets, the areal per-
sistence ratio is calculated with Eq. (6).

p ¼ S1 þ S2
S1 þ S2 þ S3

¼ S1 þ S2
½pðrðgÞÞ2�=4

ð6Þ

where S1 and S2 are the area of joints, S3 is the area of rock bridge,
r(g) is the equivalent diameter of the persistent plane where the
coplanar joints located, as shown in Fig. 2.
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