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a b s t r a c t

A set of dimensionless input parameters were defined for DEM using a characteristic time which is a
function of density and elastic modulus of particles and an arbitrary characteristic length.
Dimensionless strain rate and mass damping ratio are inversely proportional to the characteristic time,
and stress is normalized by elastic modulus to give dimensionless stress. It was demonstrated that the
response of a model in the dimensionless scale is invariant with the choice of density, elastic modulus
and the characteristic length if dimensionless strain rate and mass damping ratio are kept constant.
Small time step is a prohibitive aspect of DEM. Scaling techniques are widely employed to enlarge the
time step. Using the dimensionless scheme, it was learned that density scaling is equivalent to the use
of a higher strain rate, and stiffness scaling results in a higher strain rate and an elevated stress state
in the dimensionless scale.

� 2017 Published by Elsevier Ltd.

1. Introduction

It is necessary to select appropriate input parameters to per-
form a realistic simulation using Discrete Element Method (DEM)
There are various parameters in discrete element modeling, e.g.
density of particles, elastic modulus (or contact stiffness), particle
size distribution (PSD), deformation rate, damping, and inter-
particle friction coefficient. Some of the parameters are artificial
and have no physical meanings such as damping and strain rate
for the quasi-static analyses, while others have physical origins
such as density of particles and contact stiffness. However, even
the parameters with physical meanings are usually manipulated
to obtain responses close to experimental results within a reason-
able runtime. Limited number of guidelines for selection of the
input parameters can be found in literature (e.g. [14]). To compre-
hend the effect of each individual parameter on the behavior of
particulate models, we aimed to identify the parameters that influ-
ence the response independently. This article shows that density,
contact stiffness, characteristic size of particles, applied strain rate,
and damping are not independent from each other. These parame-
ters can be related through the characteristic time and length. A set
of dimensionless parameters is introduced that facilitate the study
of the effect of each individual input parameter independently. The
periodic boundaries, a simplified Hertz-Mindlin contact model [9],
and mass damping model are adopted.

1.1. Damping

In DEM, it is inevitable to apply an artificial damping to attain
the equilibrium and especially for modeling a quasi-static loading
conditions. Damping has been implemented into DEM through dif-
ferent methods, such as viscous damping [3], local contact damp-
ing [4] and global mass damping.

Cundall and Strack [5] proposed a system of global damping in
the form of mass proportional damping, which can be envisioned
as the effect of dashpots connecting each particle to the ground.
The amount of this damping for each particle is proportional to
its mass, so called global mass damping.

Munjiza et al. [13] introduced a new class of mass proportional
damping in the following form.

a ¼ ðk=mÞnn ð1Þ

where k and m are stiffness and mass of a single (or a multi) degree
of freedom system respectively, and a and n are damping coefficient
and damping ratio, respectively. In this method n can be tuned to
target a specific frequency range of vibrations.

1.2. Applied deformation rate

Static loading is of great interest in the field of geotechnical
engineering. For many applications of DEM in geomechanics the
objective is to simulate a static response particularly in the drained
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conditions which need greater strains to arrive the critical state.
For a DEM model to approximate a response sufficiently close to
the static conditions, the deformations have to be applied very
slowly using a small strain rate to prevent large dynamic effects
and to minimize the error. This type of loading is called quasi-
static. In the quasi-static conditions, the system is not flowing
and is in, or is close to, a state of static equilibrium, and it is
assumed that the velocities of particles and the inertia-induced
forces and moments are very small compared to the inter-
particle contact forces and moments. The inertia force is repre-
sented by the out-of-balance force of each particle, which is the
resultant of contact forces of a particle, and is in charge of moving
the particles to the equilibrium position. By monitoring the equi-
librium state of the particles, one can ensure that the unbalanced
forces are relatively small, thus that the quasi-static conditions
are fulfilled [8]. Hence, care must be taken in selection of the speed
at which a sample is compressed or sheared.

Quantitative measures exist to assess whether the system is in
equilibrium. Various dimensionless indices have been created in
DEM to evaluate and monitor the equilibrium state of granular
assemblies. Ng [14] defined the Unbalanced Force Ratio (UFR). This
index shows magnitude of the average out-of-balance forces rela-
tive to the contact forces. A small UFR value, for example less than
1%, indicates that the quasi-static conditions are fulfilled.

1.3. Scaling techniques

There are various reasons that require DEM users to adopt small
time increments such as to avoid the numerical instability encoun-
tered in explicit solutions, to capture the moments of contact for-
mation and separation, to capture the nonlinearity of the contact
model (if a nonlinear model is used), to limit the influence of the
particles to the immediate neighboring particles [17], and to min-
imize the truncation error [3]. On the other hand, the strain rate
needs to be small in quasi-static simulations to prevent from
developing dynamic effects (propagation of wave through the
assembly) and to maintain equilibrium conditions. The choice of
a small time increment along with a small strain rate leads to
excessive runtime. This encourages DEM users to artificially
increase the time step to reduce the computational cost [16]. Three
approaches have been used to increase the allowable time step,
Density Scaling (also called mass scaling, [19]), Stiffness Scaling
(e.g. [12]), and Size Scaling or Coarse Graining (e.g. [7]).

In density scaling, a higher mass value is assigned with the sole
purpose of achieving quasi-static state with larger time step. For
example, Thornton and Antony [20] scaled the particle density
up to 1012 times. It is believed that a heavier mass results in less
significant dynamic effects. The parametric study of Tu and
Andrade [21] indicates that the density scaling method is not ide-
ally effective in helping a discrete element model to obtain quasi-
static solutions. They showed that setting the mass scale to an arbi-
trary large number tends to yield unrealistic results distant from
the quasi-static state.

Numerous authors have used the DEM to simulate granular
materials at a larger size scale (e.g. [6]). This approach is similar
to the density scaling in the sense that by the increase of the char-
acteristic length the particles’ mass increase.

In contrast to particle mass and size, the critical time increment
is inversely proportional to the square root of the contact stiffness.
According to Malone and Xu [10], reducing the contact stiffness is
another approach to increase the time step in DEM to reduce the
runtime. Milburn et al. [11] mentioned that the properly selected
stiffness value resulted in very small inter-particle overlaps, and
the dynamics of the system did not change appreciably when they
increased the stiffness.

2. Dimensionless formulation of DEM

In a mechanical model, all of the variables can be expressed by
means of three fundamental dimensions, namely, M, mass, L,
length, and T, time. Therefore, based on the Buckingham p theo-
rem, three independent variables can be used to express all of
the variables. In DEM, we select E, the elastic modulus of the par-
ticles as we use a Hetzian contact model, q, the density of the
material of particles, and L0, an arbitrary characteristic length such
as diameter of the smallest particle in the assembly.

In a discrete element model, the equation of translational
motion of a particle i is generally expressed in the following form:

mi€xi þ Fd
i ¼ Fp

i ð2Þ
where mi is the mass of particle i, Fp

i is the resultant of the contact

forces acting on the particle, xi is the displacement vector, and Fd
i is

the damping force defined in the following form where a viscous
damping model is adopted.

Fd
i ¼ Ci _xi ð3Þ

Ci is the damping constant, and ‘‘�” denotes the derivative with
respect to the time variable, t. In a mass damping model, as in the
present study, Ci is calculated as follows:

Ci ¼ ami ð4Þ
where a is the damping coefficient. According to the classical
dynamics, we have:

Ci ¼ 2mixin ð5Þ
xi is the natural frequency and n is the damping ratio.

Eqs. (4) and (5) result in ai ¼ 2xin. In practice, an equal mass-
damping coefficient is applied to all of the particles in an assembly.
By targeting the highest natural frequency, xmax, we assume:

a ¼ 2xmaxn ð6Þ
As in DEM, where the differential equations of motion are

solved by an explicit scheme, the time steps should be limited to
a critical value, Dtc , to avoid numerical instability. According to
Belytschko [1]:

Dtc ¼ 2=xmax ð7Þ
On the other hand, an approximate Dtc can be obtained

through:

Dtc ¼ lmin

ffiffiffiffiffiffiffiffiffi
q=E

p
ð8Þ

referring to Šmilauer and Chareyre [18] who suggest:

lmin ¼ 2Rmin ð9Þ
for periodic boundaries, as in this study or lmin ¼ Rmin for the rigid
wall conditions.

Using Eqs. (7)–(9), the highest natural frequency is inferred
approximately as follows:

xmax ¼ R�1
min

ffiffiffiffiffiffiffiffiffi
E=q

p
ð10Þ

An arbitrary length is selected as characteristic length, L0; for
example we select:

L0 ¼ 2Rmin ð11Þ
2Rmin is the size of the smallest particle in the assembly. A nominal
length can be taken for L0 where non-spherical particles are used,
such as the diameter of a sphere with an equal volume to that of
the particle.

The characteristic time, T0, is defined as:

T0 ¼ L0
ffiffiffiffiffiffiffiffiffi
q=E

p
ð12Þ
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