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a b s t r a c t

For analyzing low probability slope failures, a modified version of subset simulation, based on
performance-based subset selection rather than the usual probability-based subset selection, is com-
bined with the random finite element method. The application to an idealized slope is used to study
the efficiency and consistency of the proposed method compared to classical Monte Carlo simulations
and the shear strength reduction (SSR) method. Results demonstrate that failure events taking place
without strength reduction have different modes of failure than stable slopes brought to failure by
SSR. The correlation between sliding volume and factor of safety is also demonstrated.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Taking account of uncertainty in slope stability analysis typi-
cally leads to a probability distribution of failure as a function of
the factor of safety. Uncertainty can reside in different aspects of
the analysis (e.g., problem geometry, material parameters, and so
on). A stochastic description of the parameters allows the uncer-
tainties to be accounted for in the numerical model of the slope.
The stochastic characterization of the parameters through proba-
bility density functions introduces a multidimensional sampling
space filled with all possible combinations of parameter values
sampled from their marginal distributions. This sampling space is
ideally spanned by a set of orthogonal vectors representing the
independent parameters of the stochastic characterization. The
probability of failure in slope stability analysis then comes down
to integrating the probability density function over the failure
domain of the sampling space.

As the deterministic function of the slope stability analysis is
generally non-analytical, an exact integration procedure does not
exist and a numerical approximation is required. Several numerical
integration techniques have been proposed for this purpose,
including deterministic methods such as the point estimate
method [30,6], and the first and second order reliability methods
(FORM and SORM respectively) [5]. These methods usually rely

on a certain level of ’regularity’ of the deterministic function and
require the number of (independent) variables to be low.

When spatial variability is involved as part of the uncertainty,
the number of independent variables for fully characterizing the
distribution of material properties over the (discretized) domain
of the model increases dramatically. The spatial variability is
accounted for by means of random fields of material properties
or state. In general, the number of variables related to spatial vari-
ability is the number of spatially varying quantities multiplied by
the number of cells used for the discretization of the random field.
With the increasing number of independent variables involved in
the model, many numerical integration schemes can no longer
integrate over the full sampling space due to the excessive compu-
tational load it would require. Moreover, the non-linearity of the
deterministic function generally prevents the application of deter-
ministic numerical methods, and statistical integration methods,
including the different versions of Monte Carlo simulation (MCS),
form the remaining option for approximating the integral over
the sampling space.

The application of MCS to slope stability problems is rather
straightforward and often cast into the framework of the random
finite element method (RFEM) [12]. This method has been success-
fully applied in slope stability analysis accounting for spatial vari-
ability in 2D [16] and 3D [17]. In all these applications, MCS is used
to sample from the entire sampling space following the marginal
distribution in each dimension. This method of crude MCS
becomes inefficient when the focus is on a small probability event
which occupies only a small part of the sampling space, whereas
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more advanced sampling strategies may lead to a higher sampling
density close to the domain of interest.

Recently, Li et al. [25] applied subset simulation (SS) to the
modelling of small probability failure events of slopes in spatially
varying soil, in which the strength reduction method was used to
determine the factor of safety of each realization in the simulation.
This approach determines the required ranking of the conditional
simulations in order to select the next conditional subset. The need
for applying the strength reduction method in each realization
introduces a computational load significantly larger than when
analyzing the stability of a slope for a given level of strength reduc-
tion. A possible alternative that bypasses the strength reduction
method in SS can significantly improve the efficiency of the total
analysis.

This paper aims at slope stability analysis for factors of safety
corresponding to low probability of failure. The factor of safety
FOS is here based on the shear strength reduction method and
defined as the factor by which the shear strength of the material

needs to be reduced to trigger failure. Note that FOS is a
realization-specific property of the slope, whereas the strength
reduction factor f s is a simulation parameter against which FOS is
compared.

2. Slope stability analysis using the random finite element
method

The random finite element method (RFEM) [12] is used to eval-
uate the reliability of a slope with spatially variable strength. The
framework of RFEM can be subdivided into three parts:

� generating a series of realizations, according to the stochastic
characterization of the problem under consideration;

� evaluating the response of the deterministic function for each
realization;

� translating the resulting factors of safety FOS to the reliability of
the slope.

Nomenclature

CoV coefficient of variation
E Young’s modulus
F failure event
FOSi factor of safety for realization i
KðiÞ max. number of Markov steps per chain in subset ðiÞ
Kcl number of clusters in KMCM
N number of realizations
Nc conditional number of realizations, number of Markov

chains
Nt total number of realizations
R residual term
V domain volume
Xð~xÞ random field
Z normalized distance from mean value (standard score)
Zð~xÞ standard normal random field
X domain
�c variance reduction factor
c Markov chain correlation factor
ki ith eigenvalue
l mean
lLN mean of logarithm
m Poisson’s ratio
r standard deviation
rLN standard deviation of logarithm
s distance normalized against ~h
~h scales of fluctuation
~ck average nodal displacement vector of cluster k
~u (nodal) displacement vector
~x spatial coordinate vector
cu cohesion (undrained shear strength)
f ends final/target strength reduction factor
f s strength reduction factor
m total number of subdivision levels
n number of cells, sample space dimension
p0 (target) conditional probability
pf probability of failure
zð~xÞ random field value at position ~x
Wð:Þ (lognormal) distribution transformation function
qð:Þ correlation function
qðXA;XBÞ correlation between domains A and B
qð:Þ prior distribution (standard normal)
Iðf sÞ binary failure indicator column vector
X discretized random field column vector

Z standard normal random field column vector
/i eigenvector i
h standard normal realization sample
n standard normal random number column vector
n01 uniform random number column vector
nMs random Markov step column vector
E½:� expectation operator
Pð:Þ probability operator
A n� n matrix
K diagonal matrix of eigenvalues
U matrix of eigenvectors
C covariance matrix
L lower triangle Cholesky factor
½:�| transpose
½:�p proposal
½:�r reduced
½:�s seed
½:�ðiÞ subset level i
½:�MCS Monte Carlo simulation
½:�SS subset simulation
½:�end final/target
½:�L lower bound
½:�U upper bound
½:�i index of dimension or realization number
½:�n normalized against number of FEM calls
½�:� spatial average
½̂:� estimation
CMD covariance matrix decomposition
DSA direct stability analysis
EOLE expansion optimal linear estimation
FEM finite element method
KMCM K-means clustering method
LAS local average subdivision
LEM limit equilibrium method
MCMC Markov chain Monte Carlo
MCS Monte Carlo simulation
MMA modified Metropolis-Hastings algorithm
PDF probability density function
RFEM random finite element method
SS subset simulation
SSR shear strength reduction
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