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a b s t r a c t

This paper presents a semi-analytical solution to one-dimensional consolidation equation of fractional
derivative Kelvin-Voigt viscoelastic saturated soils subjected to different time-dependent loadings. The
theory of fractional calculus is first introduced to Kelvin-Voigt constitutive model to describe consolida-
tion behavior of viscoelastic saturated soils. By applying Laplace transform upon the one-dimensional
consolidation equation of saturated soils, the analytical solutions of effective stress and settlement in
the Laplace transform domain are obtained. The present solutions are more general and have good agree-
ments with available solutions from the literature, and are degenerated into ones for one-dimensional
consolidation of elastic and viscoelastic saturated soils.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Based on the hypothesis of linear elasticity, Terzaghi presented
one-dimensional (1D) consolidation theory of saturated soils [1].
However, Buisman first discovered that the long term deformation
of soils after the excessive pore pressure was fully dissipated in
experiments [2], which was also reported in the works of Zeevaert
[3], Leonards and Ramiah [4], and in lots of engineering practices.
This long term deformation, which cannot be explained by classical
theories, is usually called creep. Since the 1960s, a number of vis-
coelastic constitutive models were proposed to describe the creep
of clays, such as Maxwell, Kelvin-Voigt and Merchant models [5].
The viscoelastic constitutive model was introduced to the consoli-
dation theory for saturated soils by Tan [6] in the 1950s, and some
progress were made in subsequent years by Gibson and Lo [7], Lo
[8], and Xie and Liu [9].

For the fractional derivative viscoelastic model, Gemant [10]
first proposed a fractional derivative constitutive model for vis-
coelastic materials, and then the fractional derivative viscoelastic
model is gradually becoming a hot research topic. Bagley and
Torvik [11–13] and Koeller [14] developed Maxwell, Kelvin-Voigt,
and standard linear solid viscoelastic models using the fractional
calculus, respectively. Yin et al. [15] proposed a fractional
variable-order creep model which could exactly correspond to the

motions of pore water and the solid skeleton. Also, Yin et al. [16]
derived an analytical formula under different conditions, including
creep, stress-relaxation, loading and unloading, and validated the
proposed model by laboratory experiments. Yin et al. [17] obtained
the fractional order a of the Kelvin-Voigt viscoelastic model on the
basis of 1D consolidation creep tests on a compacted soil.

Fractional calculus has been successfully applied to characterize
the rheological property of viscoelastic materials. However,
consolidation behavior of saturated soils was seldom involved in
fractional order constitutive models. In order to study the consoli-
dation behavior of fractional derivative viscoelastic saturated soils,
this paper presents a semi-analytical solution to Terzaghi’s 1D con-
solidation of viscoelastic saturated soil on the basis of the frac-
tional derivative Kelvin-Voigt model. Moreover, several typical
examples are given to assess the effects of fractional order, vis-
coelastic and loading parameters on consolidation behavior of sat-
urated soils. It illustrates the changes in soil settlement with time
factor at different values of the parameters. In addition, the classi-
cal viscoelastic models were mainly used in the studies on the con-
solidation behavior of saturated soils, the viscoelastic constitutive
models incorporating with the fractional calculus have been well
established for fairly wide range of viscoelastic materials, and the
advantages of the adopted fractional calculus in viscoelasticity
are that the constitutive relation of some viscoelastic materials
can be described accurately by the fractional calculus model with
a few experimental parameters, while the study on the
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consolidation of fractional derivative viscoelastic saturated soil is
rarely reported in the literature.

2. Theory of fractional calculus

2.1. Basic definition of fractional derivative calculus

The Riemann-Liouville fractional calculus operator theory [18]
is widely used in the rheological constitutive model. In the Lebes-
gue integral interval L1ð0; tÞ, the integral operator of fractional
order q ðReðqÞ > 0Þ is defined by

d�qf ðtÞ
dt�q ¼

Z t

0

ðt � sÞq�1

CðqÞ f ðsÞds q 2 Rþ; t > 0 ð1Þ

where U is the gamma function, q is the fractional order, s is a real
variable, and R+ is positive real number.

Corresponding v order ð�1 < Reðm� nÞ 6 0Þ differential opera-
tor is

dmf ðtÞ
dtm

¼ dn

dtn

Z t

0

ðt � sÞn�m�1

Cðn� mÞ f ðsÞds
( )

m 2 Rþ; n 2 N; t > 0 ð2Þ

where N is the integer.

2.2. Fractional derivative rheological element

From the definition of fractional derivative, the constitutive
model of fractional derivative Abel dashpot [19] is written as
follows:

rðtÞ ¼ g
daeðtÞ
dta

0 6 a 6 1 ð3Þ

where g is a viscosity coefficient (MPa d), a is a fractional order, and
t is time (day).

If it is assumed that a = 1, the fractional derivative rheological
element can be regarded as the ideal Newton fluid; If it is assumed
that a = 0, the fractional derivative rheological element can be
regarded as the linear elastic solid; if it is assumed that 0 < a < 1,
the fractional derivative rheological element can be regarded as
fractional derivative viscoelastic body; a can describe the property
of fluid state [20]. In the engineering application, the value of a can
be gotten by numerical simulation on the basis of the consolidation
creep test results [17].

3. Mathematical modeling

3.1. Governing equation

The system consisting of a soil layer with viscoelastic assump-
tion is shown schematically in Fig. 1. In the soil layer, 2H, kv, Es,
g and qðtÞ represent the thickness, permeability coefficient, modu-
lus of compressibility, viscosity coefficient and time-dependent
loading, respectively.

Based on the assumption of Terzaghi’s consolidation theory [1],
the 1D consolidation equation under time-dependent loading can
be expressed as follows:

@eðz; tÞ
@t

¼ kv
cw

@2r0ðz; tÞ
@z2

ð4Þ

where r0ðz; tÞ is the effective stress; eðz; tÞ is the corresponding
strain of r0ðz; tÞ; cw is the unit weight of water, that is cw = 9.8 kN/
m3.

Initial condition:

r0ðz;0Þ ¼ 0 ð5Þ
The top and bottom boundaries are all considered to be perme-

able to water phase.

Fig. 1. A simplified model of 1D consolidation in viscoelastic saturated soils.

Nomenclature

A linear loading rate
a real number
B parameter affecting the loading magnitude
C parameter controlling the rate of exponential loading
Es modulus of compressibility
i imaginary number
k positive integer
N integer
Q(s) result of the Laplace transform of q(t) upon time t
q loading
q0 final surcharge
q1 initial surcharge
R+ positive real number
T real number
T1 period
a fractional order
U gamma function
cw unit weight of water

e total strain of fractional derivative Kelvin-Voigt consti-
tutive model

eðz; tÞ strain
ee strain of the spring element
ev strain of the fractional derivative Abel dashpot
g viscosity coefficient
k time factor
r0 total effective stress of fractional derivative Kelvin-Voigt

constitutive model
r0ðz; tÞ effective stress
re effective stress of the spring element
rv effective stress of the fractional derivative Abel dashpot
s integral variable
uðzÞ function relating to the depth z
wðtÞ function relating to the time t
x angular frequency for sinusoidal loading function
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