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h i g h l i g h t s

� Quasi analytical holonomic homogenization model for masonry in-plane loaded.
� Subdivision of the elementary cell into elastic triangles (bricks) and non-linear interfaces (mortar).
� Comprehensive validation at a cell level in the elastic and inelastic range.
� Double structural implementation: nested multi-scale FE2 and rigid body and spring model RBSM.
� Validation of a windowed shear wall against experimental data and previous numerical models.
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a b s t r a c t

A simple holonomic compatible homogenization approach for the non-linear analysis of masonry walls
in-plane loaded is presented.
The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and

non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar joints. It is
shown how the mechanical problem in the unit cell is characterized by very few displacement variables
and how the homogenized stress-strain behaviour can be evaluated semi-analytically. At a structural
level, it is therefore not necessary to solve a FE homogenization problem at each load step in each
Gauss point.
Non-linear structural analyses are carried out on a windowed shear wall, for which experimental and

numerical data are available in the literature, with the aim of showing how quite reliable results may be
obtained with a limited computational effort.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Masonry is a traditional composite material obtained by the
assemblage of bricks and mortar. The variability of the pattern,
the shape and dimension of the blocks, as well as the fragile behav-
ior of the constituent materials, make the simulation of masonry
still a very challenging task. The elastic behavior is quite limited
because masonry is typically characterized by a reduced, almost
vanishing tensile strength. Therefore, numerical models tradition-
ally exhibit a moderate level of complexity, because they are native
non-linear. As a matter of fact, either macro- or micro-modeling
strategies are adopted to deal with masonry over elasticity.

Macro-modeling substitutes bricks and mortar with a homoge-
neous, sometimes orthotropic material with softening. Abundant is

the literature in this regard, see for instance [1–3], with the notice-
able example of no-tension material modeling (e.g. [1]), which tra-
ditionally was conceived to deal with non-linear problems
exhibiting predominant mode I fracture of the joints (e.g. arches
or pillars under rocking) and masonries with very good compres-
sive strength, where crushing and orthotropic behavior are not
paramount. Macro-modeling allows studying even large scale
structures without the need of meshing separately bricks and mor-
tar. It is therefore very convenient where efficient computations on
engineering structures are needed. Nevertheless, the calibration of
model parameters is typically done by means of comprehensive
experimental campaigns. When the level of sophistication of the
model increases [2,3], to better reproduce anisotropy, post-peak
softening in tension and compression and a Mohr-Coulomb shear
behavior with compression cap, the number of inelastic parame-
ters grows and the experimental characterization may become
costly and cumbersome. Theoretically, such approaches may be
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capable of adequately estimating the non-linear masonry behavior
for an arbitrary load combination, even if some meaningful limita-
tions occur in specific cases (see [4] for a detailed discussion), but
in practice the needed experimental data fitting would require – at
least in principle- new calibrations case by case.

The alternative micro-modeling is simply characterized by a
distinct modeling of mortar joints and blocks at a structural level.
The reduction of joints to interfaces [5–9] helps in limiting vari-
ables, especially in the non-linear range, but the approach still
remains computationally very demanding, because bricks and
mortar are meshed separately. In order to obtain sufficiently reli-
able solutions in terms of displacements and stresses, constituent
materials should be meshed with more than one element, with
the consequent grow of the number of non-linear equations to deal
with, even for small masonry panels. Furthermore, the pre-
processing phase regarding the model generation is not straight-
forward. Partitioning methods have been recently proposed to
overcome such computational limitations and speed up structural
analyses.

For the previous reasons, it can be affirmed that macro-scale
computations with FEs [10,11] still remain preferable when non-
linear analyses for engineering structures are needed.

In such a scenario, homogenization [12–23] may represent a
fair compromise between micro- and macro-modeling, because it
allows in principle to perform non-linear analyses of engineering
interest without a distinct representation of bricks and mortar,
but still considering their mechanical properties and the actual
pattern at a cell level.

Homogenization (or related simplified approaches) is essen-
tially an averaging procedure performed at a meso-scale on a rep-
resentative element of volume (REV), which generates the masonry
pattern under consideration by repetition.

On the REV, a Boundary Value Problem BVP is formulated,
allowing an estimation of the expected average masonry behavior
to be used at structural level. As a matter of fact, the resultant
material obtained from meso-scale homogenization turns out to
be orthotropic, with softening in both tension and compression.
A straightforward approach to solve BVPs at the meso-scale is obvi-
ously based on FEs [15,20–23], where bricks and mortar are either
elasto-plastic with softening or damaging materials. It is also
known as FE2 and essentially is a twofold discretization, the first
for the unit cell and the second at structural level. However, FE2

appears still rather demanding, because a new BVP has to be solved
numerically for each load step, in each Gauss point.

Alternatively, in this paper, a simplified homogenization two-
step model is proposed for the non-linear structural analysis of
masonry walls in-plane loaded. The first step is applied at the
meso-scale, where the assemblage of bricks and mortar in the
REV is substituted with a macroscopic equivalent material through
a so called compatible identification, belonging to the wide family
of the homogenization procedures. The unit cell is meshed by
means of 24 triangular constant stress (CST) plane stress elements
(bricks) and interfaces for mortar joints. Triangular elements are
assumed linear elastic, whereas the mechanical response of the
interface elements includes two dominant deformation modes,
namely peel (mode I) and shear (mode II) or a combination of
two (mixed mode). Such elements are equipped with a constitutive
relationship referred to as ‘‘holonomic” since expressed in terms of
normal and tangential tractions r and s as a path independent
function of the normal and tangential relative displacements at
the interface. Both a piecewise linear and an exponential law for-
mally identical to an improved version of the Xu-Needleman law
and proposed in another context [24–26] are implemented. Such
cohesive relationships are characterized by a post-peak softening
branch, eventually with a coupling between normal and shear rela-
tionships in the case of the improved Xu-Needleman model.

The second step, performed at a structural level, relies into the
implementation of the homogenized stress-strain relationships
into either a FE code dealing with softening materials (nested
multi-scale technique) or a rigid element approach (RBSM) where
contiguous rigid elements are connected by shear and normal non-
linear homogenized springs.

The first approach (nested multi-scale technique) is very similar
to FE2, but has the advantage that the BVP at the meso-scale level is
solved in quasi-analytical form. Limitations of FE2 are therefore
totally superseded, since the solution in terms of displacements
and stresses is found at a cell level in a semi-analytical fashion,
with an implementation of the routine used at a meso-level to
evaluate homogenized quantities directly at a structural level. As
a consequence, the scale passage does not require the huge compu-
tational effort needed by FE2.

The second approach (RBSM) has the advantage that meso- and
macro-scale are fully decoupled, i.e. homogenized stress-strain
non-linear relationships of the springs connecting rigid elements
are evaluated in a previous phase, without the need of solving
new BVPs at each load step in each Gauss point. The disadvantage
of RBSM is the intrinsic mesh dependence of the results in case of
global softening.

In both cases, it is worth mentioning that any commercial code
can be suitably used for the implementation of the homogenization
model proposed.

The procedure is quite efficient and reliable because it is not
necessary to discretize with refined meshes the elementary cell
(only three kinematic variables are needed at the meso-scale)
and hence it is possible to drastically speed up computations. In
addition, the holonomic laws assumed for mortar allow for a total
displacement formulation of the model, where the only variables
entering into the homogenization problem are represented by
displacements.

Notation: Vectors and tensors are indicated in bold. E and R
indicate strain and stress homogenized tensors, x (y) is the hori-
zontal (vertical) in plane direction, Exx (Eyy; Exy ¼ Cxy=2, Enn) is the
macroscopic horizontal (vertical, shear, on direction n) strain, Rxx

(Ryy; Thom) is the homogenized horizontal (vertical, shear) stress,

rðkÞ
xx (rðkÞ

yy ; sðkÞ) is the local horizontal (vertical, shear) stress on ele-

ment k, eðkÞxx (eðkÞyy ; eðkÞxy ¼ cðkÞxy =2) is the local horizontal (vertical, shear)
strain on element k, L (H) is the brick semi-length (height),
q ¼ L=2H, A is the elementary cell (REV) area, 2 ev (eh; e) is head
(bed, generic) joint thickness, U0

x (U0
y) indicate an imposed bound-

ary horizontal (vertical) displacement in the biaxial strain problem,

Ui
x (Ui

y) is the i-th node unknown horizontal (vertical) displace-
ment, Dn (Dt) is the interface normal (tangential) jump of displace-

ments, f I;IIn (f I;IIt ) is the joint (I: head, II: bed) normal (shear) stress,

n ¼ U0
x � U9

x , g ¼ U5
y þ U6

y , Eb (mb, Gb) is the brick Young modulus
(Poisson’s ratio, shear modulus), Em (Gm) is mortar Young (shear)
modulus, Dijhk is the homogenized elastic stiffness ijhk component,

Dul
n (Dul

t ) is the ultimate joint normal (tangential) jump of displace-
ments in the multi-linear model, f t (c) is joint tensile strength
(cohesion), dn dt /n and /t are Xu-Needleman interface parameters,
nt ¼ U5

x þ U6
x , gt ¼ U3

y , j ¼ sð1Þev=Gb, �Ut
x (�Ut

y) indicate an imposed
boundary horizontal (vertical) displacement in the shear problem,
# ¼ tan�1ðEyy=ExxÞ.

2. The simplified (compatible homogenization) holonomic
model

One of the basic concepts of homogenization is the utilization of
averaged quantities for the macroscopic strain and stress tensors
(respectively E and R) [15,20–22,27] on a representative element
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