Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Prediction and evaluation of density and volume fractions for the novel perlite composite affected by internal structure formation

MIS

Md Arifuzzaman, Ho Sung Kim*

Mechanical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia

HIGHLIGHTS

• Mechanism for internal structure formation of perlite composite foam is identified.

Volume fraction models for structural change of perlite composite are proposed.

• Models are capable of optimising manufacturing and properties.

• Problem with the conventional method for evaluating volume fractions is addressed.

ARTICLE INFO

Article history: Received 1 December 2016 Received in revised form 1 March 2017 Accepted 3 March 2017

Keywords: Perlite composite Foam Compaction Model Prediction Density Volume fraction Porosity Debris

ABSTRACT

Mechanism of internal structure formation of perlite composite foams due to compaction is identified. Foam and particle envelope densities, and volume fractions are theoretically modelled for prediction and practical evaluation. The volume fractions, as functions of manufacturing variables, include those affected by topological change of internal structure of foam after compaction process, consisting of binder, perlite material, porous zone of original particles, debris zone, and inter-particle voids. Predictions were validated against directly measured values for foam and particle envelope densities. A problem with the conventional method for obtaining volume fraction of binder is analytically addressed in terms of error sensitivity. Values for volume fraction of binder obtained from the conventional method were found to have errors up to about 300% (or about three times validated one). An example is given to show how the predictive models can be used for optimisation of manufacturing and properties. Applicability of formulas based on the new evaluative method is also shown for syntactic foams. Experimental results were obtained from a foam density range of 0.16–0.50 g/cm³ and a porosity range of 0.79–0.93 for expanded perlite particle sizes between 3 and 4 mm, a compaction ratio range of 1–3.56, and a pure sodium silicate content range of 0.05–0.35 g/ml in dilution of water for binder.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Volume fractions of composite foam constituents are fundamental elements for foam characteristics, and structural and functional behaviours. They, in general, constantly change at different stages of manufacturing. The change depends on manufacturing method and properties of constituent materials. It also depends on how internal structure forms during manufacturing and on which material is selected for development of light foams. Perlite is one of monolithic materials selected for development of composite foams or light composites. It is a glassy volcanic rock of rhyolitic composition [1], which can be processed into an expanded form for

* Corresponding author.

porous structure consisting of micro-cells [2,3]. The expansion takes place due to the presence of water in perlite when it is heated to about 649-816 °C [4]. The porous perlite particles are light, environment-friendly [5], and possess good acoustic [6] and insulation properties [7]. Their traditional uses are broadly covered in the literature by Kendall [8]. They have been used as additives or main components for composites, e.g. Portland cement/perlite composites for blocks [9,10], perlite/sodium silicate boards [11], roof insulation panels made of perlite/fibres/bituminous material [12], fibre reinforced perlite/cement composites [13], building boards made of fibre/asphalt coated perlite [14] or urea-formaldehyde resin/mineral fibres/gypsum/glass fibres [15], fibre reinforced sodium silicate/perlite composite [16], moisture resistant gypsum boards modified with perlite/starch/boric acid/vinyl acetate [5], gypsum/perlite composites [17], and light weight concrete [18]. However, their applications as the main constituent of composite

E-mail addresses: Md.Arifuzzaman@uon.edu.au (M. Arifuzzaman), ho-sung.kim@newcastle.edu.au (H.S. Kim).

Nomenclature

Symbols		V_{topc}	$(\approx V$
ρ_b	density of hydrated solid binder	•	pac
$ ho_{db}$	density of diluted binder		
$ ho_d$	density of diluent	Small le	tters
$ ho_f$	final foam density after drying	Cd	(=v)
ρ_{pB}	bulk density of perlite (from tapping measurements)	mf_b	ma
ρ_{pE}	particle envelope density before compaction	55	con
ρ_{pEc}	particle envelope density after compaction	mf_{nM}	ma
ρ_{pM}	perlite material density	m_{tonc}	ma
ρ_{pS}	particle skeletal density before compaction	tope	ma
$ ho_{topc}$	wet density of top phase mixture after compaction	п	(=v)
v_{cpore}	volume fraction of closed pores within perlite particles	r_{hn}	(=N
	in bulk volume	Бр	lite
v_{ipp}	inter-particle porosity in bulk volume		pac
v_{opore}	volume fraction of open pores within perlite particles in	Vac	vol
	bulk volume	uc	per
v_{pp}	total particle porosity	v_{dhc}	vol
v _{total}	total porosity in bulk volume	· ubc	uni
v_{φ}	total porosity of dry foam	v_{tonc}	vol
		tope	afte
Capital l	etters	vfb	vol
$M_{\rm h}$	total mass of hydrated solid binder (pure sodium sili-	vfa	(=v
D	cate + bound water) in a container	Ju	fore
M_{hc}	total mass of hydrated solid binder in foam after com-	vf _{dbc}	vol
be	paction and drving	vfnD	vol
M_{dhc}	total mass of diluted binder after compaction	$v f_{nEc}$	vol
Mdc	total mass of diluent (water) after compaction (exclud-	JPLC	afte
ut	ing bound water if exists)	vfnM	vol
Mf	total mass of dry foam	VfnMSoc	vol
M _{nD}	total mass of debris	J pivisoc	clos
M_{nM}	total mass of perlite material used to manufacture per-	vfuic	(=v
pivi	lite foam	JVIC	(wi
MnMSoc	total mass of perlite excluding debris	vfvicD	vol
Mwf	total mass of wet mix	JVICD	wit
Rhd	$(=M_b/V_{db} = M_{bc}/V_{dbc})$ Mass of hydrated solid binder per	VfvicE	vol
bu	unit volume of diluted binder	JVICE	sur
Rnhd	mass of pure binder (Na ₂ O + SiO ₂) per unit volume of di-		bou
pbu	luted binder		arie
V_{hc}	total volume of hydrated solid binder in dry foam	vf _{vi0c}	(=v
V _{dh}	total volume of diluted binder in a container	<i>j v</i> ioc	wit
V _{dbc}	total volume of diluted binder in wet foam after com-	vfuinc	vol
ubc	paction	5 11110	afte
V_{nB}	total bulk volume of dry perlite before compaction	vfuec	vol
V_{nEc}	total envelope volume of perlite particles including deb-	5700	foa
pre	ris after compaction		
V_{nM}	total volume of perlite material in drv foam		
Vton	total volume of top phase (mixture) before compaction		
top	r r r · · · · · · · · · · · · · · · · ·		

topc	$(\approx V_f)$ Total	volume	of top	phase	(mixture)	after	com-
	paction						

C _d	$(=v_{top}/v_{topc})$ Compaction ratio after drying, where $c_d > 1$
mf_b	mass fraction of hydrated solid binder in foam (after
c	compaction and drying)
$m f_{pM}$	mass fraction of perlite in foam (after drying)
m_{topc}	mass of top phase mixture after compaction per unit
	mass of perlite (before drying)
n 	$(=v_{top}/v_{pB})$ Bulk volume ratio for unit mass of perilte
r _{bp}	$(=M_{bd}/M_{pM})$ Mass of hydrated solid binder per unit per- lite mass after compaction (for either wet or dry com- pact/form) (uncully < 1)
41	pdcl/10d111 (USUALLY < 1) volume of diluted binder trapped in top phase (c = 1)
v_{ac}	volume of under bilder trapped in top phase $(t - 1)$
1)	volume of diluted binder trapped in the compact per
vabc	unit mass of perlite after compaction
Vtonc	volume of top phase (mixture) per unit mass of perlite
lope	after compaction
vfb	volume fraction of hydrated solid binder in dry foam
vf _d	(=vf _{vic})Volume fraction of diluent after compaction be-
	fore drying
vf _{dbc}	volume fraction of diluted binder after compaction
$v f_{pD}$	volume fraction of debris
vf _{pEc}	volume fraction of particle envelope (excluding binder)
	after compaction
vf _{pM}	volume fraction of perlite material in dry foam
vf _{pMSoc}	volume fraction consisting of perlite material, and
	closed pores/open pores with respect to foam volume
vJ _{vic}	$(=VJ_{vicD} + VJ_{vicE})$ Volume fraction of inter-particle volds
<i>f</i>	(WITH DINGER) IN GRY TOAM AFTER COMPACTION
VJ _{vicD}	within debris zone in dry foam after compaction
νf _{vicE}	volume fraction of inter-particle voids (with binder)
	surrounded by initially defined particle envelope
	boundaries, or fragmented particle envelope bound-
	aries, in dry foam after compaction
vf _{vi0c}	$(=vf_{vic} + vf_b)$ Volume fraction of inter-particle voids
<i>c</i>	without binder in dry foam after compaction
vf _{viwc}	volume fraction of inter-particle voids in wet foam right
<i>f</i>	arrer compaction
vJ _{voc}	form after compaction

foams have been limited due to their relatively poor mechanical properties. One of the reasons for this is that the porous perlite particles are fragile and hence easily damaged during mixing with binder, resulting in a high density with respect to strength.

It is only recently that Shastri and Kim [19,20] devloped a new manufacturing method for expanded perlite foams involving dilution, mixing, flotation, compaction, and drying/curing. They demonstrated that the method is capable of extending the limitation of traditional perlite uses. Arifuzzaman and Kim [21], subsequently, developed novel perlite/sodium silicate composite foams using the manufacturing method [19,20], and studied the basic mechanical and physical behaviours. Allameh-Haery et al. [22,23] also adopted the same method for manufacturing perlite/epoxy foams for their studies. Perlite has further been extended to other

applications e.g. metallic foams [24], structural component reinforcement [25], and others [26].

Now, the volume fraction of binder in perlite composite foam is a critical element for its structural integrity. At the same time, it is required to be reduced for lowering foam density. The low foam density can also be achieved by lowering compaction ratio during manufacturing but at the sacrifice of structural integrity of foam. A range of different properties, hence, can be produced with a single value of foam density. Further, two categories of volume fractions may be considered in perlite composite foams unlike most of other composites – one is for constituent materials and the other is for foam structural elements. The former refers to volume fractions for perlite material and binder, and the latter refers to those for survived porous particles, newly created debris, and Download English Version:

https://daneshyari.com/en/article/4913377

Download Persian Version:

https://daneshyari.com/article/4913377

Daneshyari.com